SQLite
Artifact Content
Not logged in

Artifact 7a45743fb947c89bd6c972bfb18c8f80c070ad51:


/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements an external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

/*
** The header string that appears at the beginning of every
** SQLite database.
*/
static const char zMagicHeader[] = SQLITE_FILE_HEADER;

/*
** Set this global variable to 1 to enable tracing using the TRACE
** macro.
*/
#if 0
int sqlite3BtreeTrace=1;  /* True to enable tracing */
# define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
#else
# define TRACE(X)
#endif

/*
** Extract a 2-byte big-endian integer from an array of unsigned bytes.
** But if the value is zero, make it 65536.
**
** This routine is used to extract the "offset to cell content area" value
** from the header of a btree page.  If the page size is 65536 and the page
** is empty, the offset should be 65536, but the 2-byte value stores zero.
** This routine makes the necessary adjustment to 65536.
*/
#define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)

/*
** Values passed as the 5th argument to allocateBtreePage()
*/
#define BTALLOC_ANY   0           /* Allocate any page */
#define BTALLOC_EXACT 1           /* Allocate exact page if possible */
#define BTALLOC_LE    2           /* Allocate any page <= the parameter */

/*
** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 
** defined, or 0 if it is. For example:
**
**   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
#define IfNotOmitAV(expr) (expr)
#else
#define IfNotOmitAV(expr) 0
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** A list of BtShared objects that are eligible for participation
** in shared cache.  This variable has file scope during normal builds,
** but the test harness needs to access it so we make it global for 
** test builds.
**
** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
*/
#ifdef SQLITE_TEST
BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
#else
static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
#endif
#endif /* SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Enable or disable the shared pager and schema features.
**
** This routine has no effect on existing database connections.
** The shared cache setting effects only future calls to
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
*/
int sqlite3_enable_shared_cache(int enable){
  sqlite3GlobalConfig.sharedCacheEnabled = enable;
  return SQLITE_OK;
}
#endif



#ifdef SQLITE_OMIT_SHARED_CACHE
  /*
  ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
  ** and clearAllSharedCacheTableLocks()
  ** manipulate entries in the BtShared.pLock linked list used to store
  ** shared-cache table level locks. If the library is compiled with the
  ** shared-cache feature disabled, then there is only ever one user
  ** of each BtShared structure and so this locking is not necessary. 
  ** So define the lock related functions as no-ops.
  */
  #define querySharedCacheTableLock(a,b,c) SQLITE_OK
  #define setSharedCacheTableLock(a,b,c) SQLITE_OK
  #define clearAllSharedCacheTableLocks(a)
  #define downgradeAllSharedCacheTableLocks(a)
  #define hasSharedCacheTableLock(a,b,c,d) 1
  #define hasReadConflicts(a, b) 0
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE

#ifdef SQLITE_DEBUG
/*
**** This function is only used as part of an assert() statement. ***
**
** Check to see if pBtree holds the required locks to read or write to the 
** table with root page iRoot.   Return 1 if it does and 0 if not.
**
** For example, when writing to a table with root-page iRoot via 
** Btree connection pBtree:
**
**    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
**
** When writing to an index that resides in a sharable database, the 
** caller should have first obtained a lock specifying the root page of
** the corresponding table. This makes things a bit more complicated,
** as this module treats each table as a separate structure. To determine
** the table corresponding to the index being written, this
** function has to search through the database schema.
**
** Instead of a lock on the table/index rooted at page iRoot, the caller may
** hold a write-lock on the schema table (root page 1). This is also
** acceptable.
*/
static int hasSharedCacheTableLock(
  Btree *pBtree,         /* Handle that must hold lock */
  Pgno iRoot,            /* Root page of b-tree */
  int isIndex,           /* True if iRoot is the root of an index b-tree */
  int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
){
  Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
  Pgno iTab = 0;
  BtLock *pLock;

  /* If this database is not shareable, or if the client is reading
  ** and has the read-uncommitted flag set, then no lock is required. 
  ** Return true immediately.
  */
  if( (pBtree->sharable==0)
   || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
  ){
    return 1;
  }

  /* If the client is reading  or writing an index and the schema is
  ** not loaded, then it is too difficult to actually check to see if
  ** the correct locks are held.  So do not bother - just return true.
  ** This case does not come up very often anyhow.
  */
  if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
    return 1;
  }

  /* Figure out the root-page that the lock should be held on. For table
  ** b-trees, this is just the root page of the b-tree being read or
  ** written. For index b-trees, it is the root page of the associated
  ** table.  */
  if( isIndex ){
    HashElem *p;
    for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
      Index *pIdx = (Index *)sqliteHashData(p);
      if( pIdx->tnum==(int)iRoot ){
        if( iTab ){
          /* Two or more indexes share the same root page.  There must
          ** be imposter tables.  So just return true.  The assert is not
          ** useful in that case. */
          return 1;
        }
        iTab = pIdx->pTable->tnum;
      }
    }
  }else{
    iTab = iRoot;
  }

  /* Search for the required lock. Either a write-lock on root-page iTab, a 
  ** write-lock on the schema table, or (if the client is reading) a
  ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
  for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
    if( pLock->pBtree==pBtree 
     && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
     && pLock->eLock>=eLockType 
    ){
      return 1;
    }
  }

  /* Failed to find the required lock. */
  return 0;
}
#endif /* SQLITE_DEBUG */

#ifdef SQLITE_DEBUG
/*
**** This function may be used as part of assert() statements only. ****
**
** Return true if it would be illegal for pBtree to write into the
** table or index rooted at iRoot because other shared connections are
** simultaneously reading that same table or index.
**
** It is illegal for pBtree to write if some other Btree object that
** shares the same BtShared object is currently reading or writing
** the iRoot table.  Except, if the other Btree object has the
** read-uncommitted flag set, then it is OK for the other object to
** have a read cursor.
**
** For example, before writing to any part of the table or index
** rooted at page iRoot, one should call:
**
**    assert( !hasReadConflicts(pBtree, iRoot) );
*/
static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
  BtCursor *p;
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    if( p->pgnoRoot==iRoot 
     && p->pBtree!=pBtree
     && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
    ){
      return 1;
    }
  }
  return 0;
}
#endif    /* #ifdef SQLITE_DEBUG */

/*
** Query to see if Btree handle p may obtain a lock of type eLock 
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
** SQLITE_OK if the lock may be obtained (by calling
** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
*/
static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pIter;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
  assert( p->db!=0 );
  assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
  
  /* If requesting a write-lock, then the Btree must have an open write
  ** transaction on this file. And, obviously, for this to be so there 
  ** must be an open write transaction on the file itself.
  */
  assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
  assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
  
  /* This routine is a no-op if the shared-cache is not enabled */
  if( !p->sharable ){
    return SQLITE_OK;
  }

  /* If some other connection is holding an exclusive lock, the
  ** requested lock may not be obtained.
  */
  if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
    sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    /* The condition (pIter->eLock!=eLock) in the following if(...) 
    ** statement is a simplification of:
    **
    **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
    **
    ** since we know that if eLock==WRITE_LOCK, then no other connection
    ** may hold a WRITE_LOCK on any table in this file (since there can
    ** only be a single writer).
    */
    assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
    assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
    if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
      sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
      if( eLock==WRITE_LOCK ){
        assert( p==pBt->pWriter );
        pBt->btsFlags |= BTS_PENDING;
      }
      return SQLITE_LOCKED_SHAREDCACHE;
    }
  }
  return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Add a lock on the table with root-page iTable to the shared-btree used
** by Btree handle p. Parameter eLock must be either READ_LOCK or 
** WRITE_LOCK.
**
** This function assumes the following:
**
**   (a) The specified Btree object p is connected to a sharable
**       database (one with the BtShared.sharable flag set), and
**
**   (b) No other Btree objects hold a lock that conflicts
**       with the requested lock (i.e. querySharedCacheTableLock() has
**       already been called and returned SQLITE_OK).
**
** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 
** is returned if a malloc attempt fails.
*/
static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
  assert( p->db!=0 );

  /* A connection with the read-uncommitted flag set will never try to
  ** obtain a read-lock using this function. The only read-lock obtained
  ** by a connection in read-uncommitted mode is on the sqlite_master 
  ** table, and that lock is obtained in BtreeBeginTrans().  */
  assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );

  /* This function should only be called on a sharable b-tree after it 
  ** has been determined that no other b-tree holds a conflicting lock.  */
  assert( p->sharable );
  assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );

  /* First search the list for an existing lock on this table. */
  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    if( pIter->iTable==iTable && pIter->pBtree==p ){
      pLock = pIter;
      break;
    }
  }

  /* If the above search did not find a BtLock struct associating Btree p
  ** with table iTable, allocate one and link it into the list.
  */
  if( !pLock ){
    pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
    if( !pLock ){
      return SQLITE_NOMEM_BKPT;
    }
    pLock->iTable = iTable;
    pLock->pBtree = p;
    pLock->pNext = pBt->pLock;
    pBt->pLock = pLock;
  }

  /* Set the BtLock.eLock variable to the maximum of the current lock
  ** and the requested lock. This means if a write-lock was already held
  ** and a read-lock requested, we don't incorrectly downgrade the lock.
  */
  assert( WRITE_LOCK>READ_LOCK );
  if( eLock>pLock->eLock ){
    pLock->eLock = eLock;
  }

  return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Release all the table locks (locks obtained via calls to
** the setSharedCacheTableLock() procedure) held by Btree object p.
**
** This function assumes that Btree p has an open read or write 
** transaction. If it does not, then the BTS_PENDING flag
** may be incorrectly cleared.
*/
static void clearAllSharedCacheTableLocks(Btree *p){
  BtShared *pBt = p->pBt;
  BtLock **ppIter = &pBt->pLock;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( p->sharable || 0==*ppIter );
  assert( p->inTrans>0 );

  while( *ppIter ){
    BtLock *pLock = *ppIter;
    assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
    assert( pLock->pBtree->inTrans>=pLock->eLock );
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;
      assert( pLock->iTable!=1 || pLock==&p->lock );
      if( pLock->iTable!=1 ){
        sqlite3_free(pLock);
      }
    }else{
      ppIter = &pLock->pNext;
    }
  }

  assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
  if( pBt->pWriter==p ){
    pBt->pWriter = 0;
    pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
  }else if( pBt->nTransaction==2 ){
    /* This function is called when Btree p is concluding its 
    ** transaction. If there currently exists a writer, and p is not
    ** that writer, then the number of locks held by connections other
    ** than the writer must be about to drop to zero. In this case
    ** set the BTS_PENDING flag to 0.
    **
    ** If there is not currently a writer, then BTS_PENDING must
    ** be zero already. So this next line is harmless in that case.
    */
    pBt->btsFlags &= ~BTS_PENDING;
  }
}

/*
** This function changes all write-locks held by Btree p into read-locks.
*/
static void downgradeAllSharedCacheTableLocks(Btree *p){
  BtShared *pBt = p->pBt;
  if( pBt->pWriter==p ){
    BtLock *pLock;
    pBt->pWriter = 0;
    pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
    for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
      assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
      pLock->eLock = READ_LOCK;
    }
  }
}

#endif /* SQLITE_OMIT_SHARED_CACHE */

static void releasePage(MemPage *pPage);  /* Forward reference */

/*
***** This routine is used inside of assert() only ****
**
** Verify that the cursor holds the mutex on its BtShared
*/
#ifdef SQLITE_DEBUG
static int cursorHoldsMutex(BtCursor *p){
  return sqlite3_mutex_held(p->pBt->mutex);
}

/* Verify that the cursor and the BtShared agree about what is the current
** database connetion. This is important in shared-cache mode. If the database 
** connection pointers get out-of-sync, it is possible for routines like
** btreeInitPage() to reference an stale connection pointer that references a
** a connection that has already closed.  This routine is used inside assert()
** statements only and for the purpose of double-checking that the btree code
** does keep the database connection pointers up-to-date.
*/
static int cursorOwnsBtShared(BtCursor *p){
  assert( cursorHoldsMutex(p) );
  return (p->pBtree->db==p->pBt->db);
}
#endif

/*
** Invalidate the overflow cache of the cursor passed as the first argument.
** on the shared btree structure pBt.
*/
#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)

/*
** Invalidate the overflow page-list cache for all cursors opened
** on the shared btree structure pBt.
*/
static void invalidateAllOverflowCache(BtShared *pBt){
  BtCursor *p;
  assert( sqlite3_mutex_held(pBt->mutex) );
  for(p=pBt->pCursor; p; p=p->pNext){
    invalidateOverflowCache(p);
  }
}

#ifndef SQLITE_OMIT_INCRBLOB
/*
** This function is called before modifying the contents of a table
** to invalidate any incrblob cursors that are open on the
** row or one of the rows being modified.
**
** If argument isClearTable is true, then the entire contents of the
** table is about to be deleted. In this case invalidate all incrblob
** cursors open on any row within the table with root-page pgnoRoot.
**
** Otherwise, if argument isClearTable is false, then the row with
** rowid iRow is being replaced or deleted. In this case invalidate
** only those incrblob cursors open on that specific row.
*/
static void invalidateIncrblobCursors(
  Btree *pBtree,          /* The database file to check */
  i64 iRow,               /* The rowid that might be changing */
  int isClearTable        /* True if all rows are being deleted */
){
  BtCursor *p;
  if( pBtree->hasIncrblobCur==0 ) return;
  assert( sqlite3BtreeHoldsMutex(pBtree) );
  pBtree->hasIncrblobCur = 0;
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    if( (p->curFlags & BTCF_Incrblob)!=0 ){
      pBtree->hasIncrblobCur = 1;
      if( isClearTable || p->info.nKey==iRow ){
        p->eState = CURSOR_INVALID;
      }
    }
  }
}

#else
  /* Stub function when INCRBLOB is omitted */
  #define invalidateIncrblobCursors(x,y,z)
#endif /* SQLITE_OMIT_INCRBLOB */

/*
** Set bit pgno of the BtShared.pHasContent bitvec. This is called 
** when a page that previously contained data becomes a free-list leaf 
** page.
**
** The BtShared.pHasContent bitvec exists to work around an obscure
** bug caused by the interaction of two useful IO optimizations surrounding
** free-list leaf pages:
**
**   1) When all data is deleted from a page and the page becomes
**      a free-list leaf page, the page is not written to the database
**      (as free-list leaf pages contain no meaningful data). Sometimes
**      such a page is not even journalled (as it will not be modified,
**      why bother journalling it?).
**
**   2) When a free-list leaf page is reused, its content is not read
**      from the database or written to the journal file (why should it
**      be, if it is not at all meaningful?).
**
** By themselves, these optimizations work fine and provide a handy
** performance boost to bulk delete or insert operations. However, if
** a page is moved to the free-list and then reused within the same
** transaction, a problem comes up. If the page is not journalled when
** it is moved to the free-list and it is also not journalled when it
** is extracted from the free-list and reused, then the original data
** may be lost. In the event of a rollback, it may not be possible
** to restore the database to its original configuration.
**
** The solution is the BtShared.pHasContent bitvec. Whenever a page is 
** moved to become a free-list leaf page, the corresponding bit is
** set in the bitvec. Whenever a leaf page is extracted from the free-list,
** optimization 2 above is omitted if the corresponding bit is already
** set in BtShared.pHasContent. The contents of the bitvec are cleared
** at the end of every transaction.
*/
static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
  int rc = SQLITE_OK;
  if( !pBt->pHasContent ){
    assert( pgno<=pBt->nPage );
    pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
    if( !pBt->pHasContent ){
      rc = SQLITE_NOMEM_BKPT;
    }
  }
  if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
    rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
  }
  return rc;
}

/*
** Query the BtShared.pHasContent vector.
**
** This function is called when a free-list leaf page is removed from the
** free-list for reuse. It returns false if it is safe to retrieve the
** page from the pager layer with the 'no-content' flag set. True otherwise.
*/
static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
  Bitvec *p = pBt->pHasContent;
  return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
}

/*
** Clear (destroy) the BtShared.pHasContent bitvec. This should be
** invoked at the conclusion of each write-transaction.
*/
static void btreeClearHasContent(BtShared *pBt){
  sqlite3BitvecDestroy(pBt->pHasContent);
  pBt->pHasContent = 0;
}

/*
** Release all of the apPage[] pages for a cursor.
*/
static void btreeReleaseAllCursorPages(BtCursor *pCur){
  int i;
  for(i=0; i<=pCur->iPage; i++){
    releasePage(pCur->apPage[i]);
    pCur->apPage[i] = 0;
  }
  pCur->iPage = -1;
}

/*
** The cursor passed as the only argument must point to a valid entry
** when this function is called (i.e. have eState==CURSOR_VALID). This
** function saves the current cursor key in variables pCur->nKey and
** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 
** code otherwise.
**
** If the cursor is open on an intkey table, then the integer key
** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 
** set to point to a malloced buffer pCur->nKey bytes in size containing 
** the key.
*/
static int saveCursorKey(BtCursor *pCur){
  int rc = SQLITE_OK;
  assert( CURSOR_VALID==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  if( pCur->curIntKey ){
    /* Only the rowid is required for a table btree */
    pCur->nKey = sqlite3BtreeIntegerKey(pCur);
  }else{
    /* For an index btree, save the complete key content */
    void *pKey;
    pCur->nKey = sqlite3BtreePayloadSize(pCur);
    pKey = sqlite3Malloc( pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM_BKPT;
    }
  }
  assert( !pCur->curIntKey || !pCur->pKey );
  return rc;
}

/*
** Save the current cursor position in the variables BtCursor.nKey 
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
**
** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
** prior to calling this routine.  
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  if( pCur->eState==CURSOR_SKIPNEXT ){
    pCur->eState = CURSOR_VALID;
  }else{
    pCur->skipNext = 0;
  }

  rc = saveCursorKey(pCur);
  if( rc==SQLITE_OK ){
    btreeReleaseAllCursorPages(pCur);
    pCur->eState = CURSOR_REQUIRESEEK;
  }

  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
  return rc;
}

/* Forward reference */
static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);

/*
** Save the positions of all cursors (except pExcept) that are open on
** the table with root-page iRoot.  "Saving the cursor position" means that
** the location in the btree is remembered in such a way that it can be
** moved back to the same spot after the btree has been modified.  This
** routine is called just before cursor pExcept is used to modify the
** table, for example in BtreeDelete() or BtreeInsert().
**
** If there are two or more cursors on the same btree, then all such 
** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
** routine enforces that rule.  This routine only needs to be called in
** the uncommon case when pExpect has the BTCF_Multiple flag set.
**
** If pExpect!=NULL and if no other cursors are found on the same root-page,
** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
** pointless call to this routine.
**
** Implementation note:  This routine merely checks to see if any cursors
** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
** event that cursors are in need to being saved.
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
  BtCursor *p;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pExcept==0 || pExcept->pBt==pBt );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
  }
  if( p ) return saveCursorsOnList(p, iRoot, pExcept);
  if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
  return SQLITE_OK;
}

/* This helper routine to saveAllCursors does the actual work of saving
** the cursors if and when a cursor is found that actually requires saving.
** The common case is that no cursors need to be saved, so this routine is
** broken out from its caller to avoid unnecessary stack pointer movement.
*/
static int SQLITE_NOINLINE saveCursorsOnList(
  BtCursor *p,         /* The first cursor that needs saving */
  Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
  BtCursor *pExcept    /* Do not save this cursor */
){
  do{
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
      if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
        int rc = saveCursorPosition(p);
        if( SQLITE_OK!=rc ){
          return rc;
        }
      }else{
        testcase( p->iPage>0 );
        btreeReleaseAllCursorPages(p);
      }
    }
    p = p->pNext;
  }while( p );
  return SQLITE_OK;
}

/*
** Clear the current cursor position.
*/
void sqlite3BtreeClearCursor(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  sqlite3_free(pCur->pKey);
  pCur->pKey = 0;
  pCur->eState = CURSOR_INVALID;
}

/*
** In this version of BtreeMoveto, pKey is a packed index record
** such as is generated by the OP_MakeRecord opcode.  Unpack the
** record and then call BtreeMovetoUnpacked() to do the work.
*/
static int btreeMoveto(
  BtCursor *pCur,     /* Cursor open on the btree to be searched */
  const void *pKey,   /* Packed key if the btree is an index */
  i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
  int bias,           /* Bias search to the high end */
  int *pRes           /* Write search results here */
){
  int rc;                    /* Status code */
  UnpackedRecord *pIdxKey;   /* Unpacked index key */
  char aSpace[384];          /* Temp space for pIdxKey - to avoid a malloc */
  char *pFree = 0;

  if( pKey ){
    assert( nKey==(i64)(int)nKey );
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
    );
    if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
    sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
    if( pIdxKey->nField==0 ){
      sqlite3DbFree(pCur->pKeyInfo->db, pFree);
      return SQLITE_CORRUPT_BKPT;
    }
  }else{
    pIdxKey = 0;
  }
  rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
  if( pFree ){
    sqlite3DbFree(pCur->pKeyInfo->db, pFree);
  }
  return rc;
}

/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the 
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
  int rc;
  int skipNext;
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skipNext;
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
  if( rc==SQLITE_OK ){
    sqlite3_free(pCur->pKey);
    pCur->pKey = 0;
    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
    pCur->skipNext |= skipNext;
    if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
      pCur->eState = CURSOR_SKIPNEXT;
    }
  }
  return rc;
}

#define restoreCursorPosition(p) \
  (p->eState>=CURSOR_REQUIRESEEK ? \
         btreeRestoreCursorPosition(p) : \
         SQLITE_OK)

/*
** Determine whether or not a cursor has moved from the position where
** it was last placed, or has been invalidated for any other reason.
** Cursors can move when the row they are pointing at is deleted out
** from under them, for example.  Cursor might also move if a btree
** is rebalanced.
**
** Calling this routine with a NULL cursor pointer returns false.
**
** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
** back to where it ought to be if this routine returns true.
*/
int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
  return pCur->eState!=CURSOR_VALID;
}

/*
** This routine restores a cursor back to its original position after it
** has been moved by some outside activity (such as a btree rebalance or
** a row having been deleted out from under the cursor).  
**
** On success, the *pDifferentRow parameter is false if the cursor is left
** pointing at exactly the same row.  *pDifferntRow is the row the cursor
** was pointing to has been deleted, forcing the cursor to point to some
** nearby row.
**
** This routine should only be called for a cursor that just returned
** TRUE from sqlite3BtreeCursorHasMoved().
*/
int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
  int rc;

  assert( pCur!=0 );
  assert( pCur->eState!=CURSOR_VALID );
  rc = restoreCursorPosition(pCur);
  if( rc ){
    *pDifferentRow = 1;
    return rc;
  }
  if( pCur->eState!=CURSOR_VALID ){
    *pDifferentRow = 1;
  }else{
    assert( pCur->skipNext==0 );
    *pDifferentRow = 0;
  }
  return SQLITE_OK;
}

#ifdef SQLITE_ENABLE_CURSOR_HINTS
/*
** Provide hints to the cursor.  The particular hint given (and the type
** and number of the varargs parameters) is determined by the eHintType
** parameter.  See the definitions of the BTREE_HINT_* macros for details.
*/
void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
  /* Used only by system that substitute their own storage engine */
}
#endif

/*
** Provide flag hints to the cursor.
*/
void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
  assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
  pCur->hints = x;
}


#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
** number for the pointer-map page that contains the entry for the
** input page number.
**
** Return 0 (not a valid page) for pgno==1 since there is
** no pointer map associated with page 1.  The integrity_check logic
** requires that ptrmapPageno(*,1)!=1.
*/
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
  int nPagesPerMapPage;
  Pgno iPtrMap, ret;
  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno<2 ) return 0;
  nPagesPerMapPage = (pBt->usableSize/5)+1;
  iPtrMap = (pgno-2)/nPagesPerMapPage;
  ret = (iPtrMap*nPagesPerMapPage) + 2; 
  if( ret==PENDING_BYTE_PAGE(pBt) ){
    ret++;
  }
  return ret;
}

/*
** Write an entry into the pointer map.
**
** This routine updates the pointer map entry for page number 'key'
** so that it maps to type 'eType' and parent page number 'pgno'.
**
** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
** a no-op.  If an error occurs, the appropriate error code is written
** into *pRC.
*/
static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
  DbPage *pDbPage;  /* The pointer map page */
  u8 *pPtrmap;      /* The pointer map data */
  Pgno iPtrmap;     /* The pointer map page number */
  int offset;       /* Offset in pointer map page */
  int rc;           /* Return code from subfunctions */

  if( *pRC ) return;

  assert( sqlite3_mutex_held(pBt->mutex) );
  /* The master-journal page number must never be used as a pointer map page */
  assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );

  assert( pBt->autoVacuum );
  if( key==0 ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
  if( rc!=SQLITE_OK ){
    *pRC = rc;
    return;
  }
  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){
    *pRC = SQLITE_CORRUPT_BKPT;
    goto ptrmap_exit;
  }
  assert( offset <= (int)pBt->usableSize-5 );
  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);

  if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
    TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
    *pRC= rc = sqlite3PagerWrite(pDbPage);
    if( rc==SQLITE_OK ){
      pPtrmap[offset] = eType;
      put4byte(&pPtrmap[offset+1], parent);
    }
  }

ptrmap_exit:
  sqlite3PagerUnref(pDbPage);
}

/*
** Read an entry from the pointer map.
**
** This routine retrieves the pointer map entry for page 'key', writing
** the type and parent page number to *pEType and *pPgno respectively.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
  DbPage *pDbPage;   /* The pointer map page */
  int iPtrmap;       /* Pointer map page index */
  u8 *pPtrmap;       /* Pointer map page data */
  int offset;        /* Offset of entry in pointer map */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );

  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
  if( rc!=0 ){
    return rc;
  }
  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);

  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){
    sqlite3PagerUnref(pDbPage);
    return SQLITE_CORRUPT_BKPT;
  }
  assert( offset <= (int)pBt->usableSize-5 );
  assert( pEType!=0 );
  *pEType = pPtrmap[offset];
  if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);

  sqlite3PagerUnref(pDbPage);
  if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
  return SQLITE_OK;
}

#else /* if defined SQLITE_OMIT_AUTOVACUUM */
  #define ptrmapPut(w,x,y,z,rc)
  #define ptrmapGet(w,x,y,z) SQLITE_OK
  #define ptrmapPutOvflPtr(x, y, rc)
#endif

/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** findCellPastPtr() does the same except it skips past the initial
** 4-byte child pointer found on interior pages, if there is one.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
  ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
#define findCellPastPtr(P,I) \
  ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))


/*
** This is common tail processing for btreeParseCellPtr() and
** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
** on a single B-tree page.  Make necessary adjustments to the CellInfo
** structure.
*/
static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  /* If the payload will not fit completely on the local page, we have
  ** to decide how much to store locally and how much to spill onto
  ** overflow pages.  The strategy is to minimize the amount of unused
  ** space on overflow pages while keeping the amount of local storage
  ** in between minLocal and maxLocal.
  **
  ** Warning:  changing the way overflow payload is distributed in any
  ** way will result in an incompatible file format.
  */
  int minLocal;  /* Minimum amount of payload held locally */
  int maxLocal;  /* Maximum amount of payload held locally */
  int surplus;   /* Overflow payload available for local storage */

  minLocal = pPage->minLocal;
  maxLocal = pPage->maxLocal;
  surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
  testcase( surplus==maxLocal );
  testcase( surplus==maxLocal+1 );
  if( surplus <= maxLocal ){
    pInfo->nLocal = (u16)surplus;
  }else{
    pInfo->nLocal = (u16)minLocal;
  }
  pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
}

/*
** The following routines are implementations of the MemPage.xParseCell()
** method.
**
** Parse a cell content block and fill in the CellInfo structure.
**
** btreeParseCellPtr()        =>   table btree leaf nodes
** btreeParseCellNoPayload()  =>   table btree internal nodes
** btreeParseCellPtrIndex()   =>   index btree nodes
**
** There is also a wrapper function btreeParseCell() that works for
** all MemPage types and that references the cell by index rather than
** by pointer.
*/
static void btreeParseCellPtrNoPayload(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 );
  assert( pPage->childPtrSize==4 );
#ifndef SQLITE_DEBUG
  UNUSED_PARAMETER(pPage);
#endif
  pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
  pInfo->nPayload = 0;
  pInfo->nLocal = 0;
  pInfo->pPayload = 0;
  return;
}
static void btreeParseCellPtr(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  u8 *pIter;              /* For scanning through pCell */
  u32 nPayload;           /* Number of bytes of cell payload */
  u64 iKey;               /* Extracted Key value */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 || pPage->leaf==1 );
  assert( pPage->intKeyLeaf );
  assert( pPage->childPtrSize==0 );
  pIter = pCell;

  /* The next block of code is equivalent to:
  **
  **     pIter += getVarint32(pIter, nPayload);
  **
  ** The code is inlined to avoid a function call.
  */
  nPayload = *pIter;
  if( nPayload>=0x80 ){
    u8 *pEnd = &pIter[8];
    nPayload &= 0x7f;
    do{
      nPayload = (nPayload<<7) | (*++pIter & 0x7f);
    }while( (*pIter)>=0x80 && pIter<pEnd );
  }
  pIter++;

  /* The next block of code is equivalent to:
  **
  **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
  **
  ** The code is inlined to avoid a function call.
  */
  iKey = *pIter;
  if( iKey>=0x80 ){
    u8 *pEnd = &pIter[7];
    iKey &= 0x7f;
    while(1){
      iKey = (iKey<<7) | (*++pIter & 0x7f);
      if( (*pIter)<0x80 ) break;
      if( pIter>=pEnd ){
        iKey = (iKey<<8) | *++pIter;
        break;
      }
    }
  }
  pIter++;

  pInfo->nKey = *(i64*)&iKey;
  pInfo->nPayload = nPayload;
  pInfo->pPayload = pIter;
  testcase( nPayload==pPage->maxLocal );
  testcase( nPayload==pPage->maxLocal+1 );
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    pInfo->nSize = nPayload + (u16)(pIter - pCell);
    if( pInfo->nSize<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;
  }else{
    btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
  }
}
static void btreeParseCellPtrIndex(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  u8 *pIter;              /* For scanning through pCell */
  u32 nPayload;           /* Number of bytes of cell payload */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 || pPage->leaf==1 );
  assert( pPage->intKeyLeaf==0 );
  pIter = pCell + pPage->childPtrSize;
  nPayload = *pIter;
  if( nPayload>=0x80 ){
    u8 *pEnd = &pIter[8];
    nPayload &= 0x7f;
    do{
      nPayload = (nPayload<<7) | (*++pIter & 0x7f);
    }while( *(pIter)>=0x80 && pIter<pEnd );
  }
  pIter++;
  pInfo->nKey = nPayload;
  pInfo->nPayload = nPayload;
  pInfo->pPayload = pIter;
  testcase( nPayload==pPage->maxLocal );
  testcase( nPayload==pPage->maxLocal+1 );
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    pInfo->nSize = nPayload + (u16)(pIter - pCell);
    if( pInfo->nSize<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;
  }else{
    btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
  }
}
static void btreeParseCell(
  MemPage *pPage,         /* Page containing the cell */
  int iCell,              /* The cell index.  First cell is 0 */
  CellInfo *pInfo         /* Fill in this structure */
){
  pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
}

/*
** The following routines are implementations of the MemPage.xCellSize
** method.
**
** Compute the total number of bytes that a Cell needs in the cell
** data area of the btree-page.  The return number includes the cell
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
**
** cellSizePtrNoPayload()    =>   table internal nodes
** cellSizePtr()             =>   all index nodes & table leaf nodes
*/
static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
  u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
  u8 *pEnd;                                /* End mark for a varint */
  u32 nSize;                               /* Size value to return */

#ifdef SQLITE_DEBUG
  /* The value returned by this function should always be the same as
  ** the (CellInfo.nSize) value found by doing a full parse of the
  ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
  ** this function verifies that this invariant is not violated. */
  CellInfo debuginfo;
  pPage->xParseCell(pPage, pCell, &debuginfo);
#endif

  nSize = *pIter;
  if( nSize>=0x80 ){
    pEnd = &pIter[8];
    nSize &= 0x7f;
    do{
      nSize = (nSize<<7) | (*++pIter & 0x7f);
    }while( *(pIter)>=0x80 && pIter<pEnd );
  }
  pIter++;
  if( pPage->intKey ){
    /* pIter now points at the 64-bit integer key value, a variable length 
    ** integer. The following block moves pIter to point at the first byte
    ** past the end of the key value. */
    pEnd = &pIter[9];
    while( (*pIter++)&0x80 && pIter<pEnd );
  }
  testcase( nSize==pPage->maxLocal );
  testcase( nSize==pPage->maxLocal+1 );
  if( nSize<=pPage->maxLocal ){
    nSize += (u32)(pIter - pCell);
    if( nSize<4 ) nSize = 4;
  }else{
    int minLocal = pPage->minLocal;
    nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
    testcase( nSize==pPage->maxLocal );
    testcase( nSize==pPage->maxLocal+1 );
    if( nSize>pPage->maxLocal ){
      nSize = minLocal;
    }
    nSize += 4 + (u16)(pIter - pCell);
  }
  assert( nSize==debuginfo.nSize || CORRUPT_DB );
  return (u16)nSize;
}
static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
  u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
  u8 *pEnd;              /* End mark for a varint */

#ifdef SQLITE_DEBUG
  /* The value returned by this function should always be the same as
  ** the (CellInfo.nSize) value found by doing a full parse of the
  ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
  ** this function verifies that this invariant is not violated. */
  CellInfo debuginfo;
  pPage->xParseCell(pPage, pCell, &debuginfo);
#else
  UNUSED_PARAMETER(pPage);
#endif

  assert( pPage->childPtrSize==4 );
  pEnd = pIter + 9;
  while( (*pIter++)&0x80 && pIter<pEnd );
  assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
  return (u16)(pIter - pCell);
}


#ifdef SQLITE_DEBUG
/* This variation on cellSizePtr() is used inside of assert() statements
** only. */
static u16 cellSize(MemPage *pPage, int iCell){
  return pPage->xCellSize(pPage, findCell(pPage, iCell));
}
#endif

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** If the cell pCell, part of page pPage contains a pointer
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
  CellInfo info;
  if( *pRC ) return;
  assert( pCell!=0 );
  pPage->xParseCell(pPage, pCell, &info);
  if( info.nLocal<info.nPayload ){
    Pgno ovfl = get4byte(&pCell[info.nSize-4]);
    ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
  }
}
#endif


/*
** Defragment the page given.  All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.
**
** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
** b-tree page so that there are no freeblocks or fragment bytes, all
** unused bytes are contained in the unallocated space region, and all
** cells are packed tightly at the end of the page.
*/
static int defragmentPage(MemPage *pPage){
  int i;                     /* Loop counter */
  int pc;                    /* Address of the i-th cell */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
  int cellOffset;            /* Offset to the cell pointer array */
  int cbrk;                  /* Offset to the cell content area */
  int nCell;                 /* Number of cells on the page */
  unsigned char *data;       /* The page data */
  unsigned char *temp;       /* Temp area for cell content */
  unsigned char *src;        /* Source of content */
  int iCellFirst;            /* First allowable cell index */
  int iCellLast;             /* Last possible cell index */


  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt!=0 );
  assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
  assert( pPage->nOverflow==0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  temp = 0;
  src = data = pPage->aData;
  hdr = pPage->hdrOffset;
  cellOffset = pPage->cellOffset;
  nCell = pPage->nCell;
  assert( nCell==get2byte(&data[hdr+3]) );
  usableSize = pPage->pBt->usableSize;
  cbrk = usableSize;
  iCellFirst = cellOffset + 2*nCell;
  iCellLast = usableSize - 4;
  for(i=0; i<nCell; i++){
    u8 *pAddr;     /* The i-th cell pointer */
    pAddr = &data[cellOffset + i*2];
    pc = get2byte(pAddr);
    testcase( pc==iCellFirst );
    testcase( pc==iCellLast );
    /* These conditions have already been verified in btreeInitPage()
    ** if PRAGMA cell_size_check=ON.
    */
    if( pc<iCellFirst || pc>iCellLast ){
      return SQLITE_CORRUPT_BKPT;
    }
    assert( pc>=iCellFirst && pc<=iCellLast );
    size = pPage->xCellSize(pPage, &src[pc]);
    cbrk -= size;
    if( cbrk<iCellFirst || pc+size>usableSize ){
      return SQLITE_CORRUPT_BKPT;
    }
    assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
    testcase( cbrk+size==usableSize );
    testcase( pc+size==usableSize );
    put2byte(pAddr, cbrk);
    if( temp==0 ){
      int x;
      if( cbrk==pc ) continue;
      temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
      x = get2byte(&data[hdr+5]);
      memcpy(&temp[x], &data[x], (cbrk+size) - x);
      src = temp;
    }
    memcpy(&data[cbrk], &src[pc], size);
  }
  assert( cbrk>=iCellFirst );
  put2byte(&data[hdr+5], cbrk);
  data[hdr+1] = 0;
  data[hdr+2] = 0;
  data[hdr+7] = 0;
  memset(&data[iCellFirst], 0, cbrk-iCellFirst);
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  if( cbrk-iCellFirst!=pPage->nFree ){
    return SQLITE_CORRUPT_BKPT;
  }
  return SQLITE_OK;
}

/*
** Search the free-list on page pPg for space to store a cell nByte bytes in
** size. If one can be found, return a pointer to the space and remove it
** from the free-list.
**
** If no suitable space can be found on the free-list, return NULL.
**
** This function may detect corruption within pPg.  If corruption is
** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
**
** Slots on the free list that are between 1 and 3 bytes larger than nByte
** will be ignored if adding the extra space to the fragmentation count
** causes the fragmentation count to exceed 60.
*/
static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
  const int hdr = pPg->hdrOffset;
  u8 * const aData = pPg->aData;
  int iAddr = hdr + 1;
  int pc = get2byte(&aData[iAddr]);
  int x;
  int usableSize = pPg->pBt->usableSize;

  assert( pc>0 );
  do{
    int size;            /* Size of the free slot */
    /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
    ** increasing offset. */
    if( pc>usableSize-4 || pc<iAddr+4 ){
      *pRc = SQLITE_CORRUPT_BKPT;
      return 0;
    }
    /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
    ** freeblock form a big-endian integer which is the size of the freeblock
    ** in bytes, including the 4-byte header. */
    size = get2byte(&aData[pc+2]);
    if( (x = size - nByte)>=0 ){
      testcase( x==4 );
      testcase( x==3 );
      if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
        *pRc = SQLITE_CORRUPT_BKPT;
        return 0;
      }else if( x<4 ){
        /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
        ** number of bytes in fragments may not exceed 60. */
        if( aData[hdr+7]>57 ) return 0;

        /* Remove the slot from the free-list. Update the number of
        ** fragmented bytes within the page. */
        memcpy(&aData[iAddr], &aData[pc], 2);
        aData[hdr+7] += (u8)x;
      }else{
        /* The slot remains on the free-list. Reduce its size to account
         ** for the portion used by the new allocation. */
        put2byte(&aData[pc+2], x);
      }
      return &aData[pc + x];
    }
    iAddr = pc;
    pc = get2byte(&aData[pc]);
  }while( pc );

  return 0;
}

/*
** Allocate nByte bytes of space from within the B-Tree page passed
** as the first argument. Write into *pIdx the index into pPage->aData[]
** of the first byte of allocated space. Return either SQLITE_OK or
** an error code (usually SQLITE_CORRUPT).
**
** The caller guarantees that there is sufficient space to make the
** allocation.  This routine might need to defragment in order to bring
** all the space together, however.  This routine will avoid using
** the first two bytes past the cell pointer area since presumably this
** allocation is being made in order to insert a new cell, so we will
** also end up needing a new cell pointer.
*/
static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
  const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
  u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
  int top;                             /* First byte of cell content area */
  int rc = SQLITE_OK;                  /* Integer return code */
  int gap;        /* First byte of gap between cell pointers and cell content */
  
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( nByte>=0 );  /* Minimum cell size is 4 */
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );
  assert( nByte < (int)(pPage->pBt->usableSize-8) );

  assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
  gap = pPage->cellOffset + 2*pPage->nCell;
  assert( gap<=65536 );
  /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
  ** and the reserved space is zero (the usual value for reserved space)
  ** then the cell content offset of an empty page wants to be 65536.
  ** However, that integer is too large to be stored in a 2-byte unsigned
  ** integer, so a value of 0 is used in its place. */
  top = get2byte(&data[hdr+5]);
  assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
  if( gap>top ){
    if( top==0 && pPage->pBt->usableSize==65536 ){
      top = 65536;
    }else{
      return SQLITE_CORRUPT_BKPT;
    }
  }

  /* If there is enough space between gap and top for one more cell pointer
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */
  testcase( gap+2==top );
  testcase( gap+1==top );
  testcase( gap==top );
  if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
    u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
    if( pSpace ){
      assert( pSpace>=data && (pSpace - data)<65536 );
      *pIdx = (int)(pSpace - data);
      return SQLITE_OK;
    }else if( rc ){
      return rc;
    }
  }

  /* The request could not be fulfilled using a freelist slot.  Check
  ** to see if defragmentation is necessary.
  */
  testcase( gap+2+nByte==top );
  if( gap+2+nByte>top ){
    assert( pPage->nCell>0 || CORRUPT_DB );
    rc = defragmentPage(pPage);
    if( rc ) return rc;
    top = get2byteNotZero(&data[hdr+5]);
    assert( gap+nByte<=top );
  }


  /* Allocate memory from the gap in between the cell pointer array
  ** and the cell content area.  The btreeInitPage() call has already
  ** validated the freelist.  Given that the freelist is valid, there
  ** is no way that the allocation can extend off the end of the page.
  ** The assert() below verifies the previous sentence.
  */
  top -= nByte;
  put2byte(&data[hdr+5], top);
  assert( top+nByte <= (int)pPage->pBt->usableSize );
  *pIdx = top;
  return SQLITE_OK;
}

/*
** Return a section of the pPage->aData to the freelist.
** The first byte of the new free block is pPage->aData[iStart]
** and the size of the block is iSize bytes.
**
** Adjacent freeblocks are coalesced.
**
** Note that even though the freeblock list was checked by btreeInitPage(),
** that routine will not detect overlap between cells or freeblocks.  Nor
** does it detect cells or freeblocks that encrouch into the reserved bytes
** at the end of the page.  So do additional corruption checks inside this
** routine and return SQLITE_CORRUPT if any problems are found.
*/
static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
  u16 iPtr;                             /* Address of ptr to next freeblock */
  u16 iFreeBlk;                         /* Address of the next freeblock */
  u8 hdr;                               /* Page header size.  0 or 100 */
  u8 nFrag = 0;                         /* Reduction in fragmentation */
  u16 iOrigSize = iSize;                /* Original value of iSize */
  u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
  u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
  unsigned char *data = pPage->aData;   /* Page content */

  assert( pPage->pBt!=0 );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
  assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( iSize>=4 );   /* Minimum cell size is 4 */
  assert( iStart<=iLast );

  /* Overwrite deleted information with zeros when the secure_delete
  ** option is enabled */
  if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
    memset(&data[iStart], 0, iSize);
  }

  /* The list of freeblocks must be in ascending order.  Find the 
  ** spot on the list where iStart should be inserted.
  */
  hdr = pPage->hdrOffset;
  iPtr = hdr + 1;
  if( data[iPtr+1]==0 && data[iPtr]==0 ){
    iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
  }else{
    while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
      if( iFreeBlk<iPtr+4 ){
        if( iFreeBlk==0 ) break;
        return SQLITE_CORRUPT_BKPT;
      }
      iPtr = iFreeBlk;
    }
    if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
    assert( iFreeBlk>iPtr || iFreeBlk==0 );
  
    /* At this point:
    **    iFreeBlk:   First freeblock after iStart, or zero if none
    **    iPtr:       The address of a pointer to iFreeBlk
    **
    ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
    */
    if( iFreeBlk && iEnd+3>=iFreeBlk ){
      nFrag = iFreeBlk - iEnd;
      if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
      iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
      if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
      iSize = iEnd - iStart;
      iFreeBlk = get2byte(&data[iFreeBlk]);
    }
  
    /* If iPtr is another freeblock (that is, if iPtr is not the freelist
    ** pointer in the page header) then check to see if iStart should be
    ** coalesced onto the end of iPtr.
    */
    if( iPtr>hdr+1 ){
      int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
      if( iPtrEnd+3>=iStart ){
        if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
        nFrag += iStart - iPtrEnd;
        iSize = iEnd - iPtr;
        iStart = iPtr;
      }
    }
    if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
    data[hdr+7] -= nFrag;
  }
  if( iStart==get2byte(&data[hdr+5]) ){
    /* The new freeblock is at the beginning of the cell content area,
    ** so just extend the cell content area rather than create another
    ** freelist entry */
    if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
    put2byte(&data[hdr+1], iFreeBlk);
    put2byte(&data[hdr+5], iEnd);
  }else{
    /* Insert the new freeblock into the freelist */
    put2byte(&data[iPtr], iStart);
    put2byte(&data[iStart], iFreeBlk);
    put2byte(&data[iStart+2], iSize);
  }
  pPage->nFree += iOrigSize;
  return SQLITE_OK;
}

/*
** Decode the flags byte (the first byte of the header) for a page
** and initialize fields of the MemPage structure accordingly.
**
** Only the following combinations are supported.  Anything different
** indicates a corrupt database files:
**
**         PTF_ZERODATA
**         PTF_ZERODATA | PTF_LEAF
**         PTF_LEAFDATA | PTF_INTKEY
**         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
*/
static int decodeFlags(MemPage *pPage, int flagByte){
  BtShared *pBt;     /* A copy of pPage->pBt */

  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
  flagByte &= ~PTF_LEAF;
  pPage->childPtrSize = 4-4*pPage->leaf;
  pPage->xCellSize = cellSizePtr;
  pBt = pPage->pBt;
  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
    /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
    ** interior table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
    /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
    ** leaf table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
    pPage->intKey = 1;
    if( pPage->leaf ){
      pPage->intKeyLeaf = 1;
      pPage->xParseCell = btreeParseCellPtr;
    }else{
      pPage->intKeyLeaf = 0;
      pPage->xCellSize = cellSizePtrNoPayload;
      pPage->xParseCell = btreeParseCellPtrNoPayload;
    }
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){
    /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
    ** interior index b-tree page. */
    assert( (PTF_ZERODATA)==2 );
    /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
    ** leaf index b-tree page. */
    assert( (PTF_ZERODATA|PTF_LEAF)==10 );
    pPage->intKey = 0;
    pPage->intKeyLeaf = 0;
    pPage->xParseCell = btreeParseCellPtrIndex;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
    ** an error. */
    return SQLITE_CORRUPT_BKPT;
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
}

/*
** Initialize the auxiliary information for a disk block.
**
** Return SQLITE_OK on success.  If we see that the page does
** not contain a well-formed database page, then return 
** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed.  It only shows that
** we failed to detect any corruption.
*/
static int btreeInitPage(MemPage *pPage){

  assert( pPage->pBt!=0 );
  assert( pPage->pBt->db!=0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
  assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
  assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );

  if( !pPage->isInit ){
    u16 pc;            /* Address of a freeblock within pPage->aData[] */
    u8 hdr;            /* Offset to beginning of page header */
    u8 *data;          /* Equal to pPage->aData */
    BtShared *pBt;        /* The main btree structure */
    int usableSize;    /* Amount of usable space on each page */
    u16 cellOffset;    /* Offset from start of page to first cell pointer */
    int nFree;         /* Number of unused bytes on the page */
    int top;           /* First byte of the cell content area */
    int iCellFirst;    /* First allowable cell or freeblock offset */
    int iCellLast;     /* Last possible cell or freeblock offset */

    pBt = pPage->pBt;

    hdr = pPage->hdrOffset;
    data = pPage->aData;
    /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
    ** the b-tree page type. */
    if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
    assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
    pPage->maskPage = (u16)(pBt->pageSize - 1);
    pPage->nOverflow = 0;
    usableSize = pBt->usableSize;
    pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
    pPage->aDataEnd = &data[usableSize];
    pPage->aCellIdx = &data[cellOffset];
    pPage->aDataOfst = &data[pPage->childPtrSize];
    /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
    ** the start of the cell content area. A zero value for this integer is
    ** interpreted as 65536. */
    top = get2byteNotZero(&data[hdr+5]);
    /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
    ** number of cells on the page. */
    pPage->nCell = get2byte(&data[hdr+3]);
    if( pPage->nCell>MX_CELL(pBt) ){
      /* To many cells for a single page.  The page must be corrupt */
      return SQLITE_CORRUPT_BKPT;
    }
    testcase( pPage->nCell==MX_CELL(pBt) );
    /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
    ** possible for a root page of a table that contains no rows) then the
    ** offset to the cell content area will equal the page size minus the
    ** bytes of reserved space. */
    assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );

    /* A malformed database page might cause us to read past the end
    ** of page when parsing a cell.  
    **
    ** The following block of code checks early to see if a cell extends
    ** past the end of a page boundary and causes SQLITE_CORRUPT to be 
    ** returned if it does.
    */
    iCellFirst = cellOffset + 2*pPage->nCell;
    iCellLast = usableSize - 4;
    if( pBt->db->flags & SQLITE_CellSizeCk ){
      int i;            /* Index into the cell pointer array */
      int sz;           /* Size of a cell */

      if( !pPage->leaf ) iCellLast--;
      for(i=0; i<pPage->nCell; i++){
        pc = get2byteAligned(&data[cellOffset+i*2]);
        testcase( pc==iCellFirst );
        testcase( pc==iCellLast );
        if( pc<iCellFirst || pc>iCellLast ){
          return SQLITE_CORRUPT_BKPT;
        }
        sz = pPage->xCellSize(pPage, &data[pc]);
        testcase( pc+sz==usableSize );
        if( pc+sz>usableSize ){
          return SQLITE_CORRUPT_BKPT;
        }
      }
      if( !pPage->leaf ) iCellLast++;
    }  

    /* Compute the total free space on the page
    ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
    ** start of the first freeblock on the page, or is zero if there are no
    ** freeblocks. */
    pc = get2byte(&data[hdr+1]);
    nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
    while( pc>0 ){
      u16 next, size;
      if( pc<iCellFirst || pc>iCellLast ){
        /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
        ** always be at least one cell before the first freeblock.
        **
        ** Or, the freeblock is off the end of the page
        */
        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
        /* Free blocks must be in ascending order. And the last byte of
        ** the free-block must lie on the database page.  */
        return SQLITE_CORRUPT_BKPT; 
      }
      nFree = nFree + size;
      pc = next;
    }

    /* At this point, nFree contains the sum of the offset to the start
    ** of the cell-content area plus the number of free bytes within
    ** the cell-content area. If this is greater than the usable-size
    ** of the page, then the page must be corrupted. This check also
    ** serves to verify that the offset to the start of the cell-content
    ** area, according to the page header, lies within the page.
    */
    if( nFree>usableSize ){
      return SQLITE_CORRUPT_BKPT; 
    }
    pPage->nFree = (u16)(nFree - iCellFirst);
    pPage->isInit = 1;
  }
  return SQLITE_OK;
}

/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void zeroPage(MemPage *pPage, int flags){
  unsigned char *data = pPage->aData;
  BtShared *pBt = pPage->pBt;
  u8 hdr = pPage->hdrOffset;
  u16 first;

  assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
  assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  assert( sqlite3PagerGetData(pPage->pDbPage) == data );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pBt->btsFlags & BTS_SECURE_DELETE ){
    memset(&data[hdr], 0, pBt->usableSize - hdr);
  }
  data[hdr] = (char)flags;
  first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
  memset(&data[hdr+1], 0, 4);
  data[hdr+7] = 0;
  put2byte(&data[hdr+5], pBt->usableSize);
  pPage->nFree = (u16)(pBt->usableSize - first);
  decodeFlags(pPage, flags);
  pPage->cellOffset = first;
  pPage->aDataEnd = &data[pBt->usableSize];
  pPage->aCellIdx = &data[first];
  pPage->aDataOfst = &data[pPage->childPtrSize];
  pPage->nOverflow = 0;
  assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
  pPage->maskPage = (u16)(pBt->pageSize - 1);
  pPage->nCell = 0;
  pPage->isInit = 1;
}


/*
** Convert a DbPage obtained from the pager into a MemPage used by
** the btree layer.
*/
static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
  MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
  if( pgno!=pPage->pgno ){
    pPage->aData = sqlite3PagerGetData(pDbPage);
    pPage->pDbPage = pDbPage;
    pPage->pBt = pBt;
    pPage->pgno = pgno;
    pPage->hdrOffset = pgno==1 ? 100 : 0;
  }
  assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
  return pPage; 
}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
**
** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
** about the content of the page at this time.  So do not go to the disk
** to fetch the content.  Just fill in the content with zeros for now.
** If in the future we call sqlite3PagerWrite() on this page, that
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
static int btreeGetPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
){
  int rc;
  DbPage *pDbPage;

  assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
  if( rc ) return rc;
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  return SQLITE_OK;
}

/*
** Retrieve a page from the pager cache. If the requested page is not
** already in the pager cache return NULL. Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
*/
static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
  DbPage *pDbPage;
  assert( sqlite3_mutex_held(pBt->mutex) );
  pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
  if( pDbPage ){
    return btreePageFromDbPage(pDbPage, pgno, pBt);
  }
  return 0;
}

/*
** Return the size of the database file in pages. If there is any kind of
** error, return ((unsigned int)-1).
*/
static Pgno btreePagecount(BtShared *pBt){
  return pBt->nPage;
}
u32 sqlite3BtreeLastPage(Btree *p){
  assert( sqlite3BtreeHoldsMutex(p) );
  assert( ((p->pBt->nPage)&0x8000000)==0 );
  return btreePagecount(p->pBt);
}

/*
** Get a page from the pager and initialize it.
**
** If pCur!=0 then the page is being fetched as part of a moveToChild()
** call.  Do additional sanity checking on the page in this case.
** And if the fetch fails, this routine must decrement pCur->iPage.
**
** The page is fetched as read-write unless pCur is not NULL and is
** a read-only cursor.
**
** If an error occurs, then *ppPage is undefined. It
** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
  BtShared *pBt,                  /* The database file */
  Pgno pgno,                      /* Number of the page to get */
  MemPage **ppPage,               /* Write the page pointer here */
  BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
  int bReadOnly                   /* True for a read-only page */
){
  int rc;
  DbPage *pDbPage;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
  assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
  assert( pCur==0 || pCur->iPage>0 );

  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
    goto getAndInitPage_error;
  }
  rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
  if( rc ){
    goto getAndInitPage_error;
  }
  *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
  if( (*ppPage)->isInit==0 ){
    btreePageFromDbPage(pDbPage, pgno, pBt);
    rc = btreeInitPage(*ppPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
      goto getAndInitPage_error;
    }
  }
  assert( (*ppPage)->pgno==pgno );
  assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );

  /* If obtaining a child page for a cursor, we must verify that the page is
  ** compatible with the root page. */
  if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
    rc = SQLITE_CORRUPT_BKPT;
    releasePage(*ppPage);
    goto getAndInitPage_error;
  }
  return SQLITE_OK;

getAndInitPage_error:
  if( pCur ) pCur->iPage--;
  testcase( pgno==0 );
  assert( pgno!=0 || rc==SQLITE_CORRUPT );
  return rc;
}

/*
** Release a MemPage.  This should be called once for each prior
** call to btreeGetPage.
*/
static void releasePageNotNull(MemPage *pPage){
  assert( pPage->aData );
  assert( pPage->pBt );
  assert( pPage->pDbPage!=0 );
  assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  sqlite3PagerUnrefNotNull(pPage->pDbPage);
}
static void releasePage(MemPage *pPage){
  if( pPage ) releasePageNotNull(pPage);
}

/*
** Get an unused page.
**
** This works just like btreeGetPage() with the addition:
**
**   *  If the page is already in use for some other purpose, immediately
**      release it and return an SQLITE_CURRUPT error.
**   *  Make sure the isInit flag is clear
*/
static int btreeGetUnusedPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
){
  int rc = btreeGetPage(pBt, pgno, ppPage, flags);
  if( rc==SQLITE_OK ){
    if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
      releasePage(*ppPage);
      *ppPage = 0;
      return SQLITE_CORRUPT_BKPT;
    }
    (*ppPage)->isInit = 0;
  }else{
    *ppPage = 0;
  }
  return rc;
}


/*
** During a rollback, when the pager reloads information into the cache
** so that the cache is restored to its original state at the start of
** the transaction, for each page restored this routine is called.
**
** This routine needs to reset the extra data section at the end of the
** page to agree with the restored data.
*/
static void pageReinit(DbPage *pData){
  MemPage *pPage;
  pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  assert( sqlite3PagerPageRefcount(pData)>0 );
  if( pPage->isInit ){
    assert( sqlite3_mutex_held(pPage->pBt->mutex) );
    pPage->isInit = 0;
    if( sqlite3PagerPageRefcount(pData)>1 ){
      /* pPage might not be a btree page;  it might be an overflow page
      ** or ptrmap page or a free page.  In those cases, the following
      ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
      ** But no harm is done by this.  And it is very important that
      ** btreeInitPage() be called on every btree page so we make
      ** the call for every page that comes in for re-initing. */
      btreeInitPage(pPage);
    }
  }
}

/*
** Invoke the busy handler for a btree.
*/
static int btreeInvokeBusyHandler(void *pArg){
  BtShared *pBt = (BtShared*)pArg;
  assert( pBt->db );
  assert( sqlite3_mutex_held(pBt->db->mutex) );
  return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
}

/*
** Open a database file.
** 
** zFilename is the name of the database file.  If zFilename is NULL
** then an ephemeral database is created.  The ephemeral database might
** be exclusively in memory, or it might use a disk-based memory cache.
** Either way, the ephemeral database will be automatically deleted 
** when sqlite3BtreeClose() is called.
**
** If zFilename is ":memory:" then an in-memory database is created
** that is automatically destroyed when it is closed.
**
** The "flags" parameter is a bitmask that might contain bits like
** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
**
** If the database is already opened in the same database connection
** and we are in shared cache mode, then the open will fail with an
** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
** objects in the same database connection since doing so will lead
** to problems with locking.
*/
int sqlite3BtreeOpen(
  sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
  const char *zFilename,  /* Name of the file containing the BTree database */
  sqlite3 *db,            /* Associated database handle */
  Btree **ppBtree,        /* Pointer to new Btree object written here */
  int flags,              /* Options */
  int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
){
  BtShared *pBt = 0;             /* Shared part of btree structure */
  Btree *p;                      /* Handle to return */
  sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
  int rc = SQLITE_OK;            /* Result code from this function */
  u8 nReserve;                   /* Byte of unused space on each page */
  unsigned char zDbHeader[100];  /* Database header content */

  /* True if opening an ephemeral, temporary database */
  const int isTempDb = zFilename==0 || zFilename[0]==0;

  /* Set the variable isMemdb to true for an in-memory database, or 
  ** false for a file-based database.
  */
#ifdef SQLITE_OMIT_MEMORYDB
  const int isMemdb = 0;
#else
  const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
                       || (isTempDb && sqlite3TempInMemory(db))
                       || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
#endif

  assert( db!=0 );
  assert( pVfs!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( (flags&0xff)==flags );   /* flags fit in 8 bits */

  /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
  assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );

  /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
  assert( (flags & BTREE_SINGLE)==0 || isTempDb );

  if( isMemdb ){
    flags |= BTREE_MEMORY;
  }
  if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
    vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
  }
  p = sqlite3MallocZero(sizeof(Btree));
  if( !p ){
    return SQLITE_NOMEM_BKPT;
  }
  p->inTrans = TRANS_NONE;
  p->db = db;
#ifndef SQLITE_OMIT_SHARED_CACHE
  p->lock.pBtree = p;
  p->lock.iTable = 1;
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
    if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
      int nFilename = sqlite3Strlen30(zFilename)+1;
      int nFullPathname = pVfs->mxPathname+1;
      char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
      MUTEX_LOGIC( sqlite3_mutex *mutexShared; )

      p->sharable = 1;
      if( !zFullPathname ){
        sqlite3_free(p);
        return SQLITE_NOMEM_BKPT;
      }
      if( isMemdb ){
        memcpy(zFullPathname, zFilename, nFilename);
      }else{
        rc = sqlite3OsFullPathname(pVfs, zFilename,
                                   nFullPathname, zFullPathname);
        if( rc ){
          sqlite3_free(zFullPathname);
          sqlite3_free(p);
          return rc;
        }
      }
#if SQLITE_THREADSAFE
      mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
      sqlite3_mutex_enter(mutexOpen);
      mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
      sqlite3_mutex_enter(mutexShared);
#endif
      for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
        assert( pBt->nRef>0 );
        if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
                 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
          int iDb;
          for(iDb=db->nDb-1; iDb>=0; iDb--){
            Btree *pExisting = db->aDb[iDb].pBt;
            if( pExisting && pExisting->pBt==pBt ){
              sqlite3_mutex_leave(mutexShared);
              sqlite3_mutex_leave(mutexOpen);
              sqlite3_free(zFullPathname);
              sqlite3_free(p);
              return SQLITE_CONSTRAINT;
            }
          }
          p->pBt = pBt;
          pBt->nRef++;
          break;
        }
      }
      sqlite3_mutex_leave(mutexShared);
      sqlite3_free(zFullPathname);
    }
#ifdef SQLITE_DEBUG
    else{
      /* In debug mode, we mark all persistent databases as sharable
      ** even when they are not.  This exercises the locking code and
      ** gives more opportunity for asserts(sqlite3_mutex_held())
      ** statements to find locking problems.
      */
      p->sharable = 1;
    }
#endif
  }
#endif
  if( pBt==0 ){
    /*
    ** The following asserts make sure that structures used by the btree are
    ** the right size.  This is to guard against size changes that result
    ** when compiling on a different architecture.
    */
    assert( sizeof(i64)==8 );
    assert( sizeof(u64)==8 );
    assert( sizeof(u32)==4 );
    assert( sizeof(u16)==2 );
    assert( sizeof(Pgno)==4 );
  
    pBt = sqlite3MallocZero( sizeof(*pBt) );
    if( pBt==0 ){
      rc = SQLITE_NOMEM_BKPT;
      goto btree_open_out;
    }
    rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
                          EXTRA_SIZE, flags, vfsFlags, pageReinit);
    if( rc==SQLITE_OK ){
      sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
      rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
    }
    if( rc!=SQLITE_OK ){
      goto btree_open_out;
    }
    pBt->openFlags = (u8)flags;
    pBt->db = db;
    sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
    p->pBt = pBt;
  
    pBt->pCursor = 0;
    pBt->pPage1 = 0;
    if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
#ifdef SQLITE_SECURE_DELETE
    pBt->btsFlags |= BTS_SECURE_DELETE;
#endif
    /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
    ** determined by the 2-byte integer located at an offset of 16 bytes from
    ** the beginning of the database file. */
    pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
      pBt->pageSize = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the magic name ":memory:" will create an in-memory database, then
      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
      ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
      ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
      ** regular file-name. In this case the auto-vacuum applies as per normal.
      */
      if( zFilename && !isMemdb ){
        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
      }
#endif
      nReserve = 0;
    }else{
      /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
      ** determined by the one-byte unsigned integer found at an offset of 20
      ** into the database file header. */
      nReserve = zDbHeader[20];
      pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
#endif
    }
    rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
    if( rc ) goto btree_open_out;
    pBt->usableSize = pBt->pageSize - nReserve;
    assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
   
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
    /* Add the new BtShared object to the linked list sharable BtShareds.
    */
    pBt->nRef = 1;
    if( p->sharable ){
      MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
      MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
      if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
        pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
        if( pBt->mutex==0 ){
          rc = SQLITE_NOMEM_BKPT;
          goto btree_open_out;
        }
      }
      sqlite3_mutex_enter(mutexShared);
      pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
      GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
      sqlite3_mutex_leave(mutexShared);
    }
#endif
  }

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /* If the new Btree uses a sharable pBtShared, then link the new
  ** Btree into the list of all sharable Btrees for the same connection.
  ** The list is kept in ascending order by pBt address.
  */
  if( p->sharable ){
    int i;
    Btree *pSib;
    for(i=0; i<db->nDb; i++){
      if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
        while( pSib->pPrev ){ pSib = pSib->pPrev; }
        if( (uptr)p->pBt<(uptr)pSib->pBt ){
          p->pNext = pSib;
          p->pPrev = 0;
          pSib->pPrev = p;
        }else{
          while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
            pSib = pSib->pNext;
          }
          p->pNext = pSib->pNext;
          p->pPrev = pSib;
          if( p->pNext ){
            p->pNext->pPrev = p;
          }
          pSib->pNext = p;
        }
        break;
      }
    }
  }
#endif
  *ppBtree = p;

btree_open_out:
  if( rc!=SQLITE_OK ){
    if( pBt && pBt->pPager ){
      sqlite3PagerClose(pBt->pPager);
    }
    sqlite3_free(pBt);
    sqlite3_free(p);
    *ppBtree = 0;
  }else{
    /* If the B-Tree was successfully opened, set the pager-cache size to the
    ** default value. Except, when opening on an existing shared pager-cache,
    ** do not change the pager-cache size.
    */
    if( sqlite3BtreeSchema(p, 0, 0)==0 ){
      sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
    }
  }
  if( mutexOpen ){
    assert( sqlite3_mutex_held(mutexOpen) );
    sqlite3_mutex_leave(mutexOpen);
  }
  assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
  return rc;
}

/*
** Decrement the BtShared.nRef counter.  When it reaches zero,
** remove the BtShared structure from the sharing list.  Return
** true if the BtShared.nRef counter reaches zero and return
** false if it is still positive.
*/
static int removeFromSharingList(BtShared *pBt){
#ifndef SQLITE_OMIT_SHARED_CACHE
  MUTEX_LOGIC( sqlite3_mutex *pMaster; )
  BtShared *pList;
  int removed = 0;

  assert( sqlite3_mutex_notheld(pBt->mutex) );
  MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
  sqlite3_mutex_enter(pMaster);
  pBt->nRef--;
  if( pBt->nRef<=0 ){
    if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
      GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
    }else{
      pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
      while( ALWAYS(pList) && pList->pNext!=pBt ){
        pList=pList->pNext;
      }
      if( ALWAYS(pList) ){
        pList->pNext = pBt->pNext;
      }
    }
    if( SQLITE_THREADSAFE ){
      sqlite3_mutex_free(pBt->mutex);
    }
    removed = 1;
  }
  sqlite3_mutex_leave(pMaster);
  return removed;
#else
  return 1;
#endif
}

/*
** Make sure pBt->pTmpSpace points to an allocation of 
** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
** pointer.
*/
static void allocateTempSpace(BtShared *pBt){
  if( !pBt->pTmpSpace ){
    pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );

    /* One of the uses of pBt->pTmpSpace is to format cells before
    ** inserting them into a leaf page (function fillInCell()). If
    ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
    ** by the various routines that manipulate binary cells. Which
    ** can mean that fillInCell() only initializes the first 2 or 3
    ** bytes of pTmpSpace, but that the first 4 bytes are copied from
    ** it into a database page. This is not actually a problem, but it
    ** does cause a valgrind error when the 1 or 2 bytes of unitialized 
    ** data is passed to system call write(). So to avoid this error,
    ** zero the first 4 bytes of temp space here.
    **
    ** Also:  Provide four bytes of initialized space before the
    ** beginning of pTmpSpace as an area available to prepend the
    ** left-child pointer to the beginning of a cell.
    */
    if( pBt->pTmpSpace ){
      memset(pBt->pTmpSpace, 0, 8);
      pBt->pTmpSpace += 4;
    }
  }
}

/*
** Free the pBt->pTmpSpace allocation
*/
static void freeTempSpace(BtShared *pBt){
  if( pBt->pTmpSpace ){
    pBt->pTmpSpace -= 4;
    sqlite3PageFree(pBt->pTmpSpace);
    pBt->pTmpSpace = 0;
  }
}

/*
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){
  BtShared *pBt = p->pBt;
  BtCursor *pCur;

  /* Close all cursors opened via this handle.  */
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  pCur = pBt->pCursor;
  while( pCur ){
    BtCursor *pTmp = pCur;
    pCur = pCur->pNext;
    if( pTmp->pBtree==p ){
      sqlite3BtreeCloseCursor(pTmp);
    }
  }

  /* Rollback any active transaction and free the handle structure.
  ** The call to sqlite3BtreeRollback() drops any table-locks held by
  ** this handle.
  */
  sqlite3BtreeRollback(p, SQLITE_OK, 0);
  sqlite3BtreeLeave(p);

  /* If there are still other outstanding references to the shared-btree
  ** structure, return now. The remainder of this procedure cleans 
  ** up the shared-btree.
  */
  assert( p->wantToLock==0 && p->locked==0 );
  if( !p->sharable || removeFromSharingList(pBt) ){
    /* The pBt is no longer on the sharing list, so we can access
    ** it without having to hold the mutex.
    **
    ** Clean out and delete the BtShared object.
    */
    assert( !pBt->pCursor );
    sqlite3PagerClose(pBt->pPager);
    if( pBt->xFreeSchema && pBt->pSchema ){
      pBt->xFreeSchema(pBt->pSchema);
    }
    sqlite3DbFree(0, pBt->pSchema);
    freeTempSpace(pBt);
    sqlite3_free(pBt);
  }

#ifndef SQLITE_OMIT_SHARED_CACHE
  assert( p->wantToLock==0 );
  assert( p->locked==0 );
  if( p->pPrev ) p->pPrev->pNext = p->pNext;
  if( p->pNext ) p->pNext->pPrev = p->pPrev;
#endif

  sqlite3_free(p);
  return SQLITE_OK;
}

/*
** Change the "soft" limit on the number of pages in the cache.
** Unused and unmodified pages will be recycled when the number of
** pages in the cache exceeds this soft limit.  But the size of the
** cache is allowed to grow larger than this limit if it contains
** dirty pages or pages still in active use.
*/
int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Change the "spill" limit on the number of pages in the cache.
** If the number of pages exceeds this limit during a write transaction,
** the pager might attempt to "spill" pages to the journal early in
** order to free up memory.
**
** The value returned is the current spill size.  If zero is passed
** as an argument, no changes are made to the spill size setting, so
** using mxPage of 0 is a way to query the current spill size.
*/
int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  int res;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return res;
}

#if SQLITE_MAX_MMAP_SIZE>0
/*
** Change the limit on the amount of the database file that may be
** memory mapped.
*/
int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */

/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite3BtreeSetPagerFlags(
  Btree *p,              /* The btree to set the safety level on */
  unsigned pgFlags       /* Various PAGER_* flags */
){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetFlags(pBt->pPager, pgFlags);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif

/*
** Change the default pages size and the number of reserved bytes per page.
** Or, if the page size has already been fixed, return SQLITE_READONLY 
** without changing anything.
**
** The page size must be a power of 2 between 512 and 65536.  If the page
** size supplied does not meet this constraint then the page size is not
** changed.
**
** Page sizes are constrained to be a power of two so that the region
** of the database file used for locking (beginning at PENDING_BYTE,
** the first byte past the 1GB boundary, 0x40000000) needs to occur
** at the beginning of a page.
**
** If parameter nReserve is less than zero, then the number of reserved
** bytes per page is left unchanged.
**
** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
** and autovacuum mode can no longer be changed.
*/
int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
  int rc = SQLITE_OK;
  BtShared *pBt = p->pBt;
  assert( nReserve>=-1 && nReserve<=255 );
  sqlite3BtreeEnter(p);
#if SQLITE_HAS_CODEC
  if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
#endif
  if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
    sqlite3BtreeLeave(p);
    return SQLITE_READONLY;
  }
  if( nReserve<0 ){
    nReserve = pBt->pageSize - pBt->usableSize;
  }
  assert( nReserve>=0 && nReserve<=255 );
  if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
        ((pageSize-1)&pageSize)==0 ){
    assert( (pageSize & 7)==0 );
    assert( !pBt->pCursor );
    pBt->pageSize = (u32)pageSize;
    freeTempSpace(pBt);
  }
  rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
  pBt->usableSize = pBt->pageSize - (u16)nReserve;
  if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Return the currently defined page size
*/
int sqlite3BtreeGetPageSize(Btree *p){
  return p->pBt->pageSize;
}

/*
** This function is similar to sqlite3BtreeGetReserve(), except that it
** may only be called if it is guaranteed that the b-tree mutex is already
** held.
**
** This is useful in one special case in the backup API code where it is
** known that the shared b-tree mutex is held, but the mutex on the 
** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
** were to be called, it might collide with some other operation on the
** database handle that owns *p, causing undefined behavior.
*/
int sqlite3BtreeGetReserveNoMutex(Btree *p){
  int n;
  assert( sqlite3_mutex_held(p->pBt->mutex) );
  n = p->pBt->pageSize - p->pBt->usableSize;
  return n;
}

/*
** Return the number of bytes of space at the end of every page that
** are intentually left unused.  This is the "reserved" space that is
** sometimes used by extensions.
**
** If SQLITE_HAS_MUTEX is defined then the number returned is the
** greater of the current reserved space and the maximum requested
** reserve space.
*/
int sqlite3BtreeGetOptimalReserve(Btree *p){
  int n;
  sqlite3BtreeEnter(p);
  n = sqlite3BtreeGetReserveNoMutex(p);
#ifdef SQLITE_HAS_CODEC
  if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
#endif
  sqlite3BtreeLeave(p);
  return n;
}


/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
  int n;
  sqlite3BtreeEnter(p);
  n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return n;
}

/*
** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1.  If newFlag is -1,
** then make no changes.  Always return the value of the BTS_SECURE_DELETE
** setting after the change.
*/
int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
  int b;
  if( p==0 ) return 0;
  sqlite3BtreeEnter(p);
  if( newFlag>=0 ){
    p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
    if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
  } 
  b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
  sqlite3BtreeLeave(p);
  return b;
}

/*
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
** is disabled. The default value for the auto-vacuum property is 
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/
int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
#ifdef SQLITE_OMIT_AUTOVACUUM
  return SQLITE_READONLY;
#else
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;
  u8 av = (u8)autoVacuum;

  sqlite3BtreeEnter(p);
  if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
    rc = SQLITE_READONLY;
  }else{
    pBt->autoVacuum = av ?1:0;
    pBt->incrVacuum = av==2 ?1:0;
  }
  sqlite3BtreeLeave(p);
  return rc;
#endif
}

/*
** Return the value of the 'auto-vacuum' property. If auto-vacuum is 
** enabled 1 is returned. Otherwise 0.
*/
int sqlite3BtreeGetAutoVacuum(Btree *p){
#ifdef SQLITE_OMIT_AUTOVACUUM
  return BTREE_AUTOVACUUM_NONE;
#else
  int rc;
  sqlite3BtreeEnter(p);
  rc = (
    (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
    (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
    BTREE_AUTOVACUUM_INCR
  );
  sqlite3BtreeLeave(p);
  return rc;
#endif
}


/*
** Get a reference to pPage1 of the database file.  This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success.  If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
** is returned if we run out of memory. 
*/
static int lockBtree(BtShared *pBt){
  int rc;              /* Result code from subfunctions */
  MemPage *pPage1;     /* Page 1 of the database file */
  int nPage;           /* Number of pages in the database */
  int nPageFile = 0;   /* Number of pages in the database file */
  int nPageHeader;     /* Number of pages in the database according to hdr */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pBt->pPage1==0 );
  rc = sqlite3PagerSharedLock(pBt->pPager);
  if( rc!=SQLITE_OK ) return rc;
  rc = btreeGetPage(pBt, 1, &pPage1, 0);
  if( rc!=SQLITE_OK ) return rc;

  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);
  if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
    nPage = nPageFile;
  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;
    /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
    ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
    ** 61 74 20 33 00. */
    if( memcmp(page1, zMagicHeader, 16)!=0 ){
      goto page1_init_failed;
    }

#ifdef SQLITE_OMIT_WAL
    if( page1[18]>1 ){
      pBt->btsFlags |= BTS_READ_ONLY;
    }
    if( page1[19]>1 ){
      goto page1_init_failed;
    }
#else
    if( page1[18]>2 ){
      pBt->btsFlags |= BTS_READ_ONLY;
    }
    if( page1[19]>2 ){
      goto page1_init_failed;
    }

    /* If the write version is set to 2, this database should be accessed
    ** in WAL mode. If the log is not already open, open it now. Then 
    ** return SQLITE_OK and return without populating BtShared.pPage1.
    ** The caller detects this and calls this function again. This is
    ** required as the version of page 1 currently in the page1 buffer
    ** may not be the latest version - there may be a newer one in the log
    ** file.
    */
    if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
      int isOpen = 0;
      rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
      if( rc!=SQLITE_OK ){
        goto page1_init_failed;
      }else{
#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
        sqlite3 *db;
        Db *pDb;
        if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
          while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
          if( pDb->bSyncSet==0
           && pDb->safety_level==SQLITE_DEFAULT_SYNCHRONOUS+1
          ){
            pDb->safety_level = SQLITE_DEFAULT_WAL_SYNCHRONOUS+1;
            sqlite3PagerSetFlags(pBt->pPager,
               pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
          }
        }
#endif
        if( isOpen==0 ){
          releasePage(pPage1);
          return SQLITE_OK;
        }
      }
      rc = SQLITE_NOTADB;
    }
#endif

    /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
    ** fractions and the leaf payload fraction values must be 64, 32, and 32.
    **
    ** The original design allowed these amounts to vary, but as of
    ** version 3.6.0, we require them to be fixed.
    */
    if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
    ** determined by the 2-byte integer located at an offset of 16 bytes from
    ** the beginning of the database file. */
    pageSize = (page1[16]<<8) | (page1[17]<<16);
    /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
    ** between 512 and 65536 inclusive. */
    if( ((pageSize-1)&pageSize)!=0
     || pageSize>SQLITE_MAX_PAGE_SIZE 
     || pageSize<=256 
    ){
      goto page1_init_failed;
    }
    assert( (pageSize & 7)==0 );
    /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
    ** integer at offset 20 is the number of bytes of space at the end of
    ** each page to reserve for extensions. 
    **
    ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
    ** determined by the one-byte unsigned integer found at an offset of 20
    ** into the database file header. */
    usableSize = pageSize - page1[20];
    if( (u32)pageSize!=pBt->pageSize ){
      /* After reading the first page of the database assuming a page size
      ** of BtShared.pageSize, we have discovered that the page-size is
      ** actually pageSize. Unlock the database, leave pBt->pPage1 at
      ** zero and return SQLITE_OK. The caller will call this function
      ** again with the correct page-size.
      */
      releasePage(pPage1);
      pBt->usableSize = usableSize;
      pBt->pageSize = pageSize;
      freeTempSpace(pBt);
      rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
                                   pageSize-usableSize);
      return rc;
    }
    if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
      rc = SQLITE_CORRUPT_BKPT;
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
    ** be less than 480. In other words, if the page size is 512, then the
    ** reserved space size cannot exceed 32. */
    if( usableSize<480 ){
      goto page1_init_failed;
    }
    pBt->pageSize = pageSize;
    pBt->usableSize = usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
    pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
#endif
  }

  /* maxLocal is the maximum amount of payload to store locally for
  ** a cell.  Make sure it is small enough so that at least minFanout
  ** cells can will fit on one page.  We assume a 10-byte page header.
  ** Besides the payload, the cell must store:
  **     2-byte pointer to the cell
  **     4-byte child pointer
  **     9-byte nKey value
  **     4-byte nData value
  **     4-byte overflow page pointer
  ** So a cell consists of a 2-byte pointer, a header which is as much as
  ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
  ** page pointer.
  */
  pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
  pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
  pBt->maxLeaf = (u16)(pBt->usableSize - 35);
  pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
  if( pBt->maxLocal>127 ){
    pBt->max1bytePayload = 127;
  }else{
    pBt->max1bytePayload = (u8)pBt->maxLocal;
  }
  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  pBt->pPage1 = pPage1;
  pBt->nPage = nPage;
  return SQLITE_OK;

page1_init_failed:
  releasePage(pPage1);
  pBt->pPage1 = 0;
  return rc;
}

#ifndef NDEBUG
/*
** Return the number of cursors open on pBt. This is for use
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
**
** Only write cursors are counted if wrOnly is true.  If wrOnly is
** false then all cursors are counted.
**
** For the purposes of this routine, a cursor is any cursor that
** is capable of reading or writing to the database.  Cursors that
** have been tripped into the CURSOR_FAULT state are not counted.
*/
static int countValidCursors(BtShared *pBt, int wrOnly){
  BtCursor *pCur;
  int r = 0;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
     && pCur->eState!=CURSOR_FAULT ) r++; 
  }
  return r;
}
#endif

/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which 
** has the effect of releasing the read lock.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(BtShared *pBt){
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
  if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
    MemPage *pPage1 = pBt->pPage1;
    assert( pPage1->aData );
    assert( sqlite3PagerRefcount(pBt->pPager)==1 );
    pBt->pPage1 = 0;
    releasePageNotNull(pPage1);
  }
}

/*
** If pBt points to an empty file then convert that empty file
** into a new empty database by initializing the first page of
** the database.
*/
static int newDatabase(BtShared *pBt){
  MemPage *pP1;
  unsigned char *data;
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pBt->nPage>0 ){
    return SQLITE_OK;
  }
  pP1 = pBt->pPage1;
  assert( pP1!=0 );
  data = pP1->aData;
  rc = sqlite3PagerWrite(pP1->pDbPage);
  if( rc ) return rc;
  memcpy(data, zMagicHeader, sizeof(zMagicHeader));
  assert( sizeof(zMagicHeader)==16 );
  data[16] = (u8)((pBt->pageSize>>8)&0xff);
  data[17] = (u8)((pBt->pageSize>>16)&0xff);
  data[18] = 1;
  data[19] = 1;
  assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
  data[20] = (u8)(pBt->pageSize - pBt->usableSize);
  data[21] = 64;
  data[22] = 32;
  data[23] = 32;
  memset(&data[24], 0, 100-24);
  zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
  pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
  assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
  assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
  put4byte(&data[36 + 4*4], pBt->autoVacuum);
  put4byte(&data[36 + 7*4], pBt->incrVacuum);
#endif
  pBt->nPage = 1;
  data[31] = 1;
  return SQLITE_OK;
}

/*
** Initialize the first page of the database file (creating a database
** consisting of a single page and no schema objects). Return SQLITE_OK
** if successful, or an SQLite error code otherwise.
*/
int sqlite3BtreeNewDb(Btree *p){
  int rc;
  sqlite3BtreeEnter(p);
  p->pBt->nPage = 0;
  rc = newDatabase(p->pBt);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Attempt to start a new transaction. A write-transaction
** is started if the second argument is nonzero, otherwise a read-
** transaction.  If the second argument is 2 or more and exclusive
** transaction is started, meaning that no other process is allowed
** to access the database.  A preexisting transaction may not be
** upgraded to exclusive by calling this routine a second time - the
** exclusivity flag only works for a new transaction.
**
** A write-transaction must be started before attempting any 
** changes to the database.  None of the following routines 
** will work unless a transaction is started first:
**
**      sqlite3BtreeCreateTable()
**      sqlite3BtreeCreateIndex()
**      sqlite3BtreeClearTable()
**      sqlite3BtreeDropTable()
**      sqlite3BtreeInsert()
**      sqlite3BtreeDelete()
**      sqlite3BtreeUpdateMeta()
**
** If an initial attempt to acquire the lock fails because of lock contention
** and the database was previously unlocked, then invoke the busy handler
** if there is one.  But if there was previously a read-lock, do not
** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is 
** returned when there is already a read-lock in order to avoid a deadlock.
**
** Suppose there are two processes A and B.  A has a read lock and B has
** a reserved lock.  B tries to promote to exclusive but is blocked because
** of A's read lock.  A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;

  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the btree is already in a write-transaction, or it
  ** is already in a read-transaction and a read-transaction
  ** is requested, this is a no-op.
  */
  if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
    goto trans_begun;
  }
  assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );

  /* Write transactions are not possible on a read-only database */
  if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }

#ifndef SQLITE_OMIT_SHARED_CACHE
  {
    sqlite3 *pBlock = 0;
    /* If another database handle has already opened a write transaction 
    ** on this shared-btree structure and a second write transaction is
    ** requested, return SQLITE_LOCKED.
    */
    if( (wrflag && pBt->inTransaction==TRANS_WRITE)
     || (pBt->btsFlags & BTS_PENDING)!=0
    ){
      pBlock = pBt->pWriter->db;
    }else if( wrflag>1 ){
      BtLock *pIter;
      for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
        if( pIter->pBtree!=p ){
          pBlock = pIter->pBtree->db;
          break;
        }
      }
    }
    if( pBlock ){
      sqlite3ConnectionBlocked(p->db, pBlock);
      rc = SQLITE_LOCKED_SHAREDCACHE;
      goto trans_begun;
    }
  }
#endif

  /* Any read-only or read-write transaction implies a read-lock on 
  ** page 1. So if some other shared-cache client already has a write-lock 
  ** on page 1, the transaction cannot be opened. */
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
  if( SQLITE_OK!=rc ) goto trans_begun;

  pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
  if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
  do {
    /* Call lockBtree() until either pBt->pPage1 is populated or
    ** lockBtree() returns something other than SQLITE_OK. lockBtree()
    ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
    ** reading page 1 it discovers that the page-size of the database 
    ** file is not pBt->pageSize. In this case lockBtree() will update
    ** pBt->pageSize to the page-size of the file on disk.
    */
    while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );

    if( rc==SQLITE_OK && wrflag ){
      if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
        rc = SQLITE_READONLY;
      }else{
        rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
        if( rc==SQLITE_OK ){
          rc = newDatabase(pBt);
        }
      }
    }
  
    if( rc!=SQLITE_OK ){
      unlockBtreeIfUnused(pBt);
    }
  }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
          btreeInvokeBusyHandler(pBt) );

  if( rc==SQLITE_OK ){
    if( p->inTrans==TRANS_NONE ){
      pBt->nTransaction++;
#ifndef SQLITE_OMIT_SHARED_CACHE
      if( p->sharable ){
        assert( p->lock.pBtree==p && p->lock.iTable==1 );
        p->lock.eLock = READ_LOCK;
        p->lock.pNext = pBt->pLock;
        pBt->pLock = &p->lock;
      }
#endif
    }
    p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
    if( p->inTrans>pBt->inTransaction ){
      pBt->inTransaction = p->inTrans;
    }
    if( wrflag ){
      MemPage *pPage1 = pBt->pPage1;
#ifndef SQLITE_OMIT_SHARED_CACHE
      assert( !pBt->pWriter );
      pBt->pWriter = p;
      pBt->btsFlags &= ~BTS_EXCLUSIVE;
      if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
#endif

      /* If the db-size header field is incorrect (as it may be if an old
      ** client has been writing the database file), update it now. Doing
      ** this sooner rather than later means the database size can safely 
      ** re-read the database size from page 1 if a savepoint or transaction
      ** rollback occurs within the transaction.
      */
      if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
        rc = sqlite3PagerWrite(pPage1->pDbPage);
        if( rc==SQLITE_OK ){
          put4byte(&pPage1->aData[28], pBt->nPage);
        }
      }
    }
  }


trans_begun:
  if( rc==SQLITE_OK && wrflag ){
    /* This call makes sure that the pager has the correct number of
    ** open savepoints. If the second parameter is greater than 0 and
    ** the sub-journal is not already open, then it will be opened here.
    */
    rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
  }

  btreeIntegrity(p);
  sqlite3BtreeLeave(p);
  return rc;
}

#ifndef SQLITE_OMIT_AUTOVACUUM

/*
** Set the pointer-map entries for all children of page pPage. Also, if
** pPage contains cells that point to overflow pages, set the pointer
** map entries for the overflow pages as well.
*/
static int setChildPtrmaps(MemPage *pPage){
  int i;                             /* Counter variable */
  int nCell;                         /* Number of cells in page pPage */
  int rc;                            /* Return code */
  BtShared *pBt = pPage->pBt;
  u8 isInitOrig = pPage->isInit;
  Pgno pgno = pPage->pgno;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  rc = btreeInitPage(pPage);
  if( rc!=SQLITE_OK ){
    goto set_child_ptrmaps_out;
  }
  nCell = pPage->nCell;

  for(i=0; i<nCell; i++){
    u8 *pCell = findCell(pPage, i);

    ptrmapPutOvflPtr(pPage, pCell, &rc);

    if( !pPage->leaf ){
      Pgno childPgno = get4byte(pCell);
      ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
    }
  }

  if( !pPage->leaf ){
    Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
  }

set_child_ptrmaps_out:
  pPage->isInit = isInitOrig;
  return rc;
}

/*
** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
** that it points to iTo. Parameter eType describes the type of pointer to
** be modified, as  follows:
**
** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child 
**                   page of pPage.
**
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
**                   page pointed to by one of the cells on pPage.
**
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
**                   overflow page in the list.
*/
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  if( eType==PTRMAP_OVERFLOW2 ){
    /* The pointer is always the first 4 bytes of the page in this case.  */
    if( get4byte(pPage->aData)!=iFrom ){
      return SQLITE_CORRUPT_BKPT;
    }
    put4byte(pPage->aData, iTo);
  }else{
    u8 isInitOrig = pPage->isInit;
    int i;
    int nCell;
    int rc;

    rc = btreeInitPage(pPage);
    if( rc ) return rc;
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        pPage->xParseCell(pPage, pCell, &info);
        if( info.nLocal<info.nPayload
         && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
         && iFrom==get4byte(pCell+info.nSize-4)
        ){
          put4byte(pCell+info.nSize-4, iTo);
          break;
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
    }
  
    if( i==nCell ){
      if( eType!=PTRMAP_BTREE || 
          get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
        return SQLITE_CORRUPT_BKPT;
      }
      put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
    }

    pPage->isInit = isInitOrig;
  }
  return SQLITE_OK;
}


/*
** Move the open database page pDbPage to location iFreePage in the 
** database. The pDbPage reference remains valid.
**
** The isCommit flag indicates that there is no need to remember that
** the journal needs to be sync()ed before database page pDbPage->pgno 
** can be written to. The caller has already promised not to write to that
** page.
*/
static int relocatePage(
  BtShared *pBt,           /* Btree */
  MemPage *pDbPage,        /* Open page to move */
  u8 eType,                /* Pointer map 'type' entry for pDbPage */
  Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
  Pgno iFreePage,          /* The location to move pDbPage to */
  int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
){
  MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
  Pgno iDbPage = pDbPage->pgno;
  Pager *pPager = pBt->pPager;
  int rc;

  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pDbPage->pBt==pBt );

  /* Move page iDbPage from its current location to page number iFreePage */
  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
      iDbPage, iFreePage, iPtrPage, eType));
  rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  pDbPage->pgno = iFreePage;

  /* If pDbPage was a btree-page, then it may have child pages and/or cells
  ** that point to overflow pages. The pointer map entries for all these
  ** pages need to be changed.
  **
  ** If pDbPage is an overflow page, then the first 4 bytes may store a
  ** pointer to a subsequent overflow page. If this is the case, then
  ** the pointer map needs to be updated for the subsequent overflow page.
  */
  if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
    rc = setChildPtrmaps(pDbPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }else{
    Pgno nextOvfl = get4byte(pDbPage->aData);
    if( nextOvfl!=0 ){
      ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }

  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  ** that it points at iFreePage. Also fix the pointer map entry for
  ** iPtrPage.
  */
  if( eType!=PTRMAP_ROOTPAGE ){
    rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    rc = sqlite3PagerWrite(pPtrPage->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(pPtrPage);
      return rc;
    }
    rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
    releasePage(pPtrPage);
    if( rc==SQLITE_OK ){
      ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
    }
  }
  return rc;
}

/* Forward declaration required by incrVacuumStep(). */
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);

/*
** Perform a single step of an incremental-vacuum. If successful, return
** SQLITE_OK. If there is no work to do (and therefore no point in 
** calling this function again), return SQLITE_DONE. Or, if an error 
** occurs, return some other error code.
**
** More specifically, this function attempts to re-organize the database so 
** that the last page of the file currently in use is no longer in use.
**
** Parameter nFin is the number of pages that this database would contain
** were this function called until it returns SQLITE_DONE.
**
** If the bCommit parameter is non-zero, this function assumes that the 
** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 
** or an error. bCommit is passed true for an auto-vacuum-on-commit 
** operation, or false for an incremental vacuum.
*/
static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
  Pgno nFreeList;           /* Number of pages still on the free-list */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( iLastPg>nFin );

  if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
    u8 eType;
    Pgno iPtrPage;

    nFreeList = get4byte(&pBt->pPage1->aData[36]);
    if( nFreeList==0 ){
      return SQLITE_DONE;
    }

    rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( eType==PTRMAP_ROOTPAGE ){
      return SQLITE_CORRUPT_BKPT;
    }

    if( eType==PTRMAP_FREEPAGE ){
      if( bCommit==0 ){
        /* Remove the page from the files free-list. This is not required
        ** if bCommit is non-zero. In that case, the free-list will be
        ** truncated to zero after this function returns, so it doesn't 
        ** matter if it still contains some garbage entries.
        */
        Pgno iFreePg;
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        assert( iFreePg==iLastPg );
        releasePage(pFreePg);
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;
      u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
      Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */

      rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If bCommit is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **
      ** On the other hand, if bCommit is greater than zero, then keep
      ** looping until a free-page located within the first nFin pages
      ** of the file is found.
      */
      if( bCommit==0 ){
        eMode = BTALLOC_LE;
        iNear = nFin;
      }
      do {
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
        if( rc!=SQLITE_OK ){
          releasePage(pLastPg);
          return rc;
        }
        releasePage(pFreePg);
      }while( bCommit && iFreePg>nFin );
      assert( iFreePg<iLastPg );
      
      rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
      releasePage(pLastPg);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }

  if( bCommit==0 ){
    do {
      iLastPg--;
    }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
    pBt->bDoTruncate = 1;
    pBt->nPage = iLastPg;
  }
  return SQLITE_OK;
}

/*
** The database opened by the first argument is an auto-vacuum database
** nOrig pages in size containing nFree free pages. Return the expected 
** size of the database in pages following an auto-vacuum operation.
*/
static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
  int nEntry;                     /* Number of entries on one ptrmap page */
  Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
  Pgno nFin;                      /* Return value */

  nEntry = pBt->usableSize/5;
  nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
  nFin = nOrig - nFree - nPtrmap;
  if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
    nFin--;
  }
  while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
    nFin--;
  }

  return nFin;
}

/*
** A write-transaction must be opened before calling this function.
** It performs a single unit of work towards an incremental vacuum.
**
** If the incremental vacuum is finished after this function has run,
** SQLITE_DONE is returned. If it is not finished, but no error occurred,
** SQLITE_OK is returned. Otherwise an SQLite error code. 
*/
int sqlite3BtreeIncrVacuum(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
  if( !pBt->autoVacuum ){
    rc = SQLITE_DONE;
  }else{
    Pgno nOrig = btreePagecount(pBt);
    Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
    Pgno nFin = finalDbSize(pBt, nOrig, nFree);

    if( nOrig<nFin ){
      rc = SQLITE_CORRUPT_BKPT;
    }else if( nFree>0 ){
      rc = saveAllCursors(pBt, 0, 0);
      if( rc==SQLITE_OK ){
        invalidateAllOverflowCache(pBt);
        rc = incrVacuumStep(pBt, nFin, nOrig, 0);
      }
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
        put4byte(&pBt->pPage1->aData[28], pBt->nPage);
      }
    }else{
      rc = SQLITE_DONE;
    }
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** This routine is called prior to sqlite3PagerCommit when a transaction
** is committed for an auto-vacuum database.
**
** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
** the database file should be truncated to during the commit process. 
** i.e. the database has been reorganized so that only the first *pnTrunc
** pages are in use.
*/
static int autoVacuumCommit(BtShared *pBt){
  int rc = SQLITE_OK;
  Pager *pPager = pBt->pPager;
  VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )

  assert( sqlite3_mutex_held(pBt->mutex) );
  invalidateAllOverflowCache(pBt);
  assert(pBt->autoVacuum);
  if( !pBt->incrVacuum ){
    Pgno nFin;         /* Number of pages in database after autovacuuming */
    Pgno nFree;        /* Number of pages on the freelist initially */
    Pgno iFree;        /* The next page to be freed */
    Pgno nOrig;        /* Database size before freeing */

    nOrig = btreePagecount(pBt);
    if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
      /* It is not possible to create a database for which the final page
      ** is either a pointer-map page or the pending-byte page. If one
      ** is encountered, this indicates corruption.
      */
      return SQLITE_CORRUPT_BKPT;
    }

    nFree = get4byte(&pBt->pPage1->aData[36]);
    nFin = finalDbSize(pBt, nOrig, nFree);
    if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
    if( nFin<nOrig ){
      rc = saveAllCursors(pBt, 0, 0);
    }
    for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
      rc = incrVacuumStep(pBt, nFin, iFree, 1);
    }
    if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
      rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
      put4byte(&pBt->pPage1->aData[32], 0);
      put4byte(&pBt->pPage1->aData[36], 0);
      put4byte(&pBt->pPage1->aData[28], nFin);
      pBt->bDoTruncate = 1;
      pBt->nPage = nFin;
    }
    if( rc!=SQLITE_OK ){
      sqlite3PagerRollback(pPager);
    }
  }

  assert( nRef>=sqlite3PagerRefcount(pPager) );
  return rc;
}

#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
# define setChildPtrmaps(x) SQLITE_OK
#endif

/*
** This routine does the first phase of a two-phase commit.  This routine
** causes a rollback journal to be created (if it does not already exist)
** and populated with enough information so that if a power loss occurs
** the database can be restored to its original state by playing back
** the journal.  Then the contents of the journal are flushed out to
** the disk.  After the journal is safely on oxide, the changes to the
** database are written into the database file and flushed to oxide.
** At the end of this call, the rollback journal still exists on the
** disk and we are still holding all locks, so the transaction has not
** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
** commit process.
**
** This call is a no-op if no write-transaction is currently active on pBt.
**
** Otherwise, sync the database file for the btree pBt. zMaster points to
** the name of a master journal file that should be written into the
** individual journal file, or is NULL, indicating no master journal file 
** (single database transaction).
**
** When this is called, the master journal should already have been
** created, populated with this journal pointer and synced to disk.
**
** Once this is routine has returned, the only thing required to commit
** the write-transaction for this database file is to delete the journal.
*/
int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
  int rc = SQLITE_OK;
  if( p->inTrans==TRANS_WRITE ){
    BtShared *pBt = p->pBt;
    sqlite3BtreeEnter(p);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      rc = autoVacuumCommit(pBt);
      if( rc!=SQLITE_OK ){
        sqlite3BtreeLeave(p);
        return rc;
      }
    }
    if( pBt->bDoTruncate ){
      sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
    }
#endif
    rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
    sqlite3BtreeLeave(p);
  }
  return rc;
}

/*
** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
** at the conclusion of a transaction.
*/
static void btreeEndTransaction(Btree *p){
  BtShared *pBt = p->pBt;
  sqlite3 *db = p->db;
  assert( sqlite3BtreeHoldsMutex(p) );

#ifndef SQLITE_OMIT_AUTOVACUUM
  pBt->bDoTruncate = 0;
#endif
  if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
    /* If there are other active statements that belong to this database
    ** handle, downgrade to a read-only transaction. The other statements
    ** may still be reading from the database.  */
    downgradeAllSharedCacheTableLocks(p);
    p->inTrans = TRANS_READ;
  }else{
    /* If the handle had any kind of transaction open, decrement the 
    ** transaction count of the shared btree. If the transaction count 
    ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
    ** call below will unlock the pager.  */
    if( p->inTrans!=TRANS_NONE ){
      clearAllSharedCacheTableLocks(p);
      pBt->nTransaction--;
      if( 0==pBt->nTransaction ){
        pBt->inTransaction = TRANS_NONE;
      }
    }

    /* Set the current transaction state to TRANS_NONE and unlock the 
    ** pager if this call closed the only read or write transaction.  */
    p->inTrans = TRANS_NONE;
    unlockBtreeIfUnused(pBt);
  }

  btreeIntegrity(p);
}

/*
** Commit the transaction currently in progress.
**
** This routine implements the second phase of a 2-phase commit.  The
** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
** routine did all the work of writing information out to disk and flushing the
** contents so that they are written onto the disk platter.  All this
** routine has to do is delete or truncate or zero the header in the
** the rollback journal (which causes the transaction to commit) and
** drop locks.
**
** Normally, if an error occurs while the pager layer is attempting to 
** finalize the underlying journal file, this function returns an error and
** the upper layer will attempt a rollback. However, if the second argument
** is non-zero then this b-tree transaction is part of a multi-file 
** transaction. In this case, the transaction has already been committed 
** (by deleting a master journal file) and the caller will ignore this 
** functions return code. So, even if an error occurs in the pager layer,
** reset the b-tree objects internal state to indicate that the write
** transaction has been closed. This is quite safe, as the pager will have
** transitioned to the error state.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){

  if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the handle has a write-transaction open, commit the shared-btrees 
  ** transaction and set the shared state to TRANS_READ.
  */
  if( p->inTrans==TRANS_WRITE ){
    int rc;
    BtShared *pBt = p->pBt;
    assert( pBt->inTransaction==TRANS_WRITE );
    assert( pBt->nTransaction>0 );
    rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
    if( rc!=SQLITE_OK && bCleanup==0 ){
      sqlite3BtreeLeave(p);
      return rc;
    }
    p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
    pBt->inTransaction = TRANS_READ;
    btreeClearHasContent(pBt);
  }

  btreeEndTransaction(p);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Do both phases of a commit.
*/
int sqlite3BtreeCommit(Btree *p){
  int rc;
  sqlite3BtreeEnter(p);
  rc = sqlite3BtreeCommitPhaseOne(p, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeCommitPhaseTwo(p, 0);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** This routine sets the state to CURSOR_FAULT and the error
** code to errCode for every cursor on any BtShared that pBtree
** references.  Or if the writeOnly flag is set to 1, then only
** trip write cursors and leave read cursors unchanged.
**
** Every cursor is a candidate to be tripped, including cursors
** that belong to other database connections that happen to be
** sharing the cache with pBtree.
**
** This routine gets called when a rollback occurs. If the writeOnly
** flag is true, then only write-cursors need be tripped - read-only
** cursors save their current positions so that they may continue 
** following the rollback. Or, if writeOnly is false, all cursors are 
** tripped. In general, writeOnly is false if the transaction being
** rolled back modified the database schema. In this case b-tree root
** pages may be moved or deleted from the database altogether, making
** it unsafe for read cursors to continue.
**
** If the writeOnly flag is true and an error is encountered while 
** saving the current position of a read-only cursor, all cursors, 
** including all read-cursors are tripped.
**
** SQLITE_OK is returned if successful, or if an error occurs while
** saving a cursor position, an SQLite error code.
*/
int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
  BtCursor *p;
  int rc = SQLITE_OK;

  assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
  if( pBtree ){
    sqlite3BtreeEnter(pBtree);
    for(p=pBtree->pBt->pCursor; p; p=p->pNext){
      int i;
      if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
        if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
          rc = saveCursorPosition(p);
          if( rc!=SQLITE_OK ){
            (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
            break;
          }
        }
      }else{
        sqlite3BtreeClearCursor(p);
        p->eState = CURSOR_FAULT;
        p->skipNext = errCode;
      }
      for(i=0; i<=p->iPage; i++){
        releasePage(p->apPage[i]);
        p->apPage[i] = 0;
      }
    }
    sqlite3BtreeLeave(pBtree);
  }
  return rc;
}

/*
** Rollback the transaction in progress.
**
** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
** Only write cursors are tripped if writeOnly is true but all cursors are
** tripped if writeOnly is false.  Any attempt to use
** a tripped cursor will result in an error.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
  int rc;
  BtShared *pBt = p->pBt;
  MemPage *pPage1;

  assert( writeOnly==1 || writeOnly==0 );
  assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
  sqlite3BtreeEnter(p);
  if( tripCode==SQLITE_OK ){
    rc = tripCode = saveAllCursors(pBt, 0, 0);
    if( rc ) writeOnly = 0;
  }else{
    rc = SQLITE_OK;
  }
  if( tripCode ){
    int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
    assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
    if( rc2!=SQLITE_OK ) rc = rc2;
  }
  btreeIntegrity(p);

  if( p->inTrans==TRANS_WRITE ){
    int rc2;

    assert( TRANS_WRITE==pBt->inTransaction );
    rc2 = sqlite3PagerRollback(pBt->pPager);
    if( rc2!=SQLITE_OK ){
      rc = rc2;
    }

    /* The rollback may have destroyed the pPage1->aData value.  So
    ** call btreeGetPage() on page 1 again to make
    ** sure pPage1->aData is set correctly. */
    if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
      int nPage = get4byte(28+(u8*)pPage1->aData);
      testcase( nPage==0 );
      if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
      testcase( pBt->nPage!=nPage );
      pBt->nPage = nPage;
      releasePage(pPage1);
    }
    assert( countValidCursors(pBt, 1)==0 );
    pBt->inTransaction = TRANS_READ;
    btreeClearHasContent(pBt);
  }

  btreeEndTransaction(p);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Start a statement subtransaction. The subtransaction can be rolled
** back independently of the main transaction. You must start a transaction 
** before starting a subtransaction. The subtransaction is ended automatically 
** if the main transaction commits or rolls back.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block.  If a constraint
** error occurs within the statement, the effect of that one statement
** can be rolled back without having to rollback the entire transaction.
**
** A statement sub-transaction is implemented as an anonymous savepoint. The
** value passed as the second parameter is the total number of savepoints,
** including the new anonymous savepoint, open on the B-Tree. i.e. if there
** are no active savepoints and no other statement-transactions open,
** iStatement is 1. This anonymous savepoint can be released or rolled back
** using the sqlite3BtreeSavepoint() function.
*/
int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
  int rc;
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  assert( p->inTrans==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( iStatement>0 );
  assert( iStatement>p->db->nSavepoint );
  assert( pBt->inTransaction==TRANS_WRITE );
  /* At the pager level, a statement transaction is a savepoint with
  ** an index greater than all savepoints created explicitly using
  ** SQL statements. It is illegal to open, release or rollback any
  ** such savepoints while the statement transaction savepoint is active.
  */
  rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
** or SAVEPOINT_RELEASE. This function either releases or rolls back the
** savepoint identified by parameter iSavepoint, depending on the value 
** of op.
**
** Normally, iSavepoint is greater than or equal to zero. However, if op is
** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 
** contents of the entire transaction are rolled back. This is different
** from a normal transaction rollback, as no locks are released and the
** transaction remains open.
*/
int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
  int rc = SQLITE_OK;
  if( p && p->inTrans==TRANS_WRITE ){
    BtShared *pBt = p->pBt;
    assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
    assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
    sqlite3BtreeEnter(p);
    rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
    if( rc==SQLITE_OK ){
      if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
        pBt->nPage = 0;
      }
      rc = newDatabase(pBt);
      pBt->nPage = get4byte(28 + pBt->pPage1->aData);

      /* The database size was written into the offset 28 of the header
      ** when the transaction started, so we know that the value at offset
      ** 28 is nonzero. */
      assert( pBt->nPage>0 );
    }
    sqlite3BtreeLeave(p);
  }
  return rc;
}

/*
** Create a new cursor for the BTree whose root is on the page
** iTable. If a read-only cursor is requested, it is assumed that
** the caller already has at least a read-only transaction open
** on the database already. If a write-cursor is requested, then
** the caller is assumed to have an open write transaction.
**
** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
** can be used for reading or for writing if other conditions for writing
** are also met.  These are the conditions that must be met in order
** for writing to be allowed:
**
** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
**
** 2:  Other database connections that share the same pager cache
**     but which are not in the READ_UNCOMMITTED state may not have
**     cursors open with wrFlag==0 on the same table.  Otherwise
**     the changes made by this write cursor would be visible to
**     the read cursors in the other database connection.
**
** 3:  The database must be writable (not on read-only media)
**
** 4:  There must be an active transaction.
**
** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
** is set.  If FORDELETE is set, that is a hint to the implementation that
** this cursor will only be used to seek to and delete entries of an index
** as part of a larger DELETE statement.  The FORDELETE hint is not used by
** this implementation.  But in a hypothetical alternative storage engine 
** in which index entries are automatically deleted when corresponding table
** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
** operations on this cursor can be no-ops and all READ operations can 
** return a null row (2-bytes: 0x01 0x00).
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree.  If it is not, then the cursor acquired
** will not work correctly.
**
** It is assumed that the sqlite3BtreeCursorZero() has been called
** on pCur to initialize the memory space prior to invoking this routine.
*/
static int btreeCursor(
  Btree *p,                              /* The btree */
  int iTable,                            /* Root page of table to open */
  int wrFlag,                            /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  BtShared *pBt = p->pBt;                /* Shared b-tree handle */
  BtCursor *pX;                          /* Looping over other all cursors */

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( wrFlag==0 
       || wrFlag==BTREE_WRCSR 
       || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 
  );

  /* The following assert statements verify that if this is a sharable 
  ** b-tree database, the connection is holding the required table locks, 
  ** and that no other connection has any open cursor that conflicts with 
  ** this lock.  */
  assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
  assert( wrFlag==0 || !hasReadConflicts(p, iTable) );

  /* Assert that the caller has opened the required transaction. */
  assert( p->inTrans>TRANS_NONE );
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );
  assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );

  if( wrFlag ){
    allocateTempSpace(pBt);
    if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    assert( wrFlag==0 );
    iTable = 0;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
  pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
  /* If there are two or more cursors on the same btree, then all such
  ** cursors *must* have the BTCF_Multiple flag set. */
  for(pX=pBt->pCursor; pX; pX=pX->pNext){
    if( pX->pgnoRoot==(Pgno)iTable ){
      pX->curFlags |= BTCF_Multiple;
      pCur->curFlags |= BTCF_Multiple;
    }
  }
  pCur->pNext = pBt->pCursor;
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
  return SQLITE_OK;
}
int sqlite3BtreeCursor(
  Btree *p,                                   /* The btree */
  int iTable,                                 /* Root page of table to open */
  int wrFlag,                                 /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
  BtCursor *pCur                              /* Write new cursor here */
){
  int rc;
  if( iTable<1 ){
    rc = SQLITE_CORRUPT_BKPT;
  }else{
    sqlite3BtreeEnter(p);
    rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
    sqlite3BtreeLeave(p);
  }
  return rc;
}

/*
** Return the size of a BtCursor object in bytes.
**
** This interfaces is needed so that users of cursors can preallocate
** sufficient storage to hold a cursor.  The BtCursor object is opaque
** to users so they cannot do the sizeof() themselves - they must call
** this routine.
*/
int sqlite3BtreeCursorSize(void){
  return ROUND8(sizeof(BtCursor));
}

/*
** Initialize memory that will be converted into a BtCursor object.
**
** The simple approach here would be to memset() the entire object
** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
** do not need to be zeroed and they are large, so we can save a lot
** of run-time by skipping the initialization of those elements.
*/
void sqlite3BtreeCursorZero(BtCursor *p){
  memset(p, 0, offsetof(BtCursor, iPage));
}

/*
** Close a cursor.  The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite3BtreeCloseCursor(BtCursor *pCur){
  Btree *pBtree = pCur->pBtree;
  if( pBtree ){
    int i;
    BtShared *pBt = pCur->pBt;
    sqlite3BtreeEnter(pBtree);
    sqlite3BtreeClearCursor(pCur);
    assert( pBt->pCursor!=0 );
    if( pBt->pCursor==pCur ){
      pBt->pCursor = pCur->pNext;
    }else{
      BtCursor *pPrev = pBt->pCursor;
      do{
        if( pPrev->pNext==pCur ){
          pPrev->pNext = pCur->pNext;
          break;
        }
        pPrev = pPrev->pNext;
      }while( ALWAYS(pPrev) );
    }
    for(i=0; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    unlockBtreeIfUnused(pBt);
    sqlite3_free(pCur->aOverflow);
    /* sqlite3_free(pCur); */
    sqlite3BtreeLeave(pBtree);
  }
  return SQLITE_OK;
}

/*
** Make sure the BtCursor* given in the argument has a valid
** BtCursor.info structure.  If it is not already valid, call
** btreeParseCell() to fill it in.
**
** BtCursor.info is a cache of the information in the current cell.
** Using this cache reduces the number of calls to btreeParseCell().
*/
#ifndef NDEBUG
  static void assertCellInfo(BtCursor *pCur){
    CellInfo info;
    int iPage = pCur->iPage;
    memset(&info, 0, sizeof(info));
    btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
    assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
  }
#else
  #define assertCellInfo(x)
#endif
static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
  if( pCur->info.nSize==0 ){
    int iPage = pCur->iPage;
    pCur->curFlags |= BTCF_ValidNKey;
    btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
  }else{
    assertCellInfo(pCur);
  }
}

#ifndef NDEBUG  /* The next routine used only within assert() statements */
/*
** Return true if the given BtCursor is valid.  A valid cursor is one
** that is currently pointing to a row in a (non-empty) table.
** This is a verification routine is used only within assert() statements.
*/
int sqlite3BtreeCursorIsValid(BtCursor *pCur){
  return pCur && pCur->eState==CURSOR_VALID;
}
#endif /* NDEBUG */

/*
** Return the value of the integer key or "rowid" for a table btree.
** This routine is only valid for a cursor that is pointing into a
** ordinary table btree.  If the cursor points to an index btree or
** is invalid, the result of this routine is undefined.
*/
i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->curIntKey );
  getCellInfo(pCur);
  return pCur->info.nKey;
}

/*
** Return the number of bytes of payload for the entry that pCur is
** currently pointing to.  For table btrees, this will be the amount
** of data.  For index btrees, this will be the size of the key.
**
** The caller must guarantee that the cursor is pointing to a non-NULL
** valid entry.  In other words, the calling procedure must guarantee
** that the cursor has Cursor.eState==CURSOR_VALID.
*/
u32 sqlite3BtreePayloadSize(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  getCellInfo(pCur);
  return pCur->info.nPayload;
}

/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the 
** linked list of overflow pages. If possible, it uses the auto-vacuum
** pointer-map data instead of reading the content of page ovfl to do so. 
**
** If an error occurs an SQLite error code is returned. Otherwise:
**
** The page number of the next overflow page in the linked list is 
** written to *pPgnoNext. If page ovfl is the last page in its linked 
** list, *pPgnoNext is set to zero. 
**
** If ppPage is not NULL, and a reference to the MemPage object corresponding
** to page number pOvfl was obtained, then *ppPage is set to point to that
** reference. It is the responsibility of the caller to call releasePage()
** on *ppPage to free the reference. In no reference was obtained (because
** the pointer-map was used to obtain the value for *pPgnoNext), then
** *ppPage is set to zero.
*/
static int getOverflowPage(
  BtShared *pBt,               /* The database file */
  Pgno ovfl,                   /* Current overflow page number */
  MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
  Pgno *pPgnoNext              /* OUT: Next overflow page number */
){
  Pgno next = 0;
  MemPage *pPage = 0;
  int rc = SQLITE_OK;

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert(pPgnoNext);

#ifndef SQLITE_OMIT_AUTOVACUUM
  /* Try to find the next page in the overflow list using the
  ** autovacuum pointer-map pages. Guess that the next page in 
  ** the overflow list is page number (ovfl+1). If that guess turns 
  ** out to be wrong, fall back to loading the data of page 
  ** number ovfl to determine the next page number.
  */
  if( pBt->autoVacuum ){
    Pgno pgno;
    Pgno iGuess = ovfl+1;
    u8 eType;

    while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
      iGuess++;
    }

    if( iGuess<=btreePagecount(pBt) ){
      rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
      if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
        next = iGuess;
        rc = SQLITE_DONE;
      }
    }
  }
#endif

  assert( next==0 || rc==SQLITE_DONE );
  if( rc==SQLITE_OK ){
    rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
    assert( rc==SQLITE_OK || pPage==0 );
    if( rc==SQLITE_OK ){
      next = get4byte(pPage->aData);
    }
  }

  *pPgnoNext = next;
  if( ppPage ){
    *ppPage = pPage;
  }else{
    releasePage(pPage);
  }
  return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}

/*
** Copy data from a buffer to a page, or from a page to a buffer.
**
** pPayload is a pointer to data stored on database page pDbPage.
** If argument eOp is false, then nByte bytes of data are copied
** from pPayload to the buffer pointed at by pBuf. If eOp is true,
** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
** of data are copied from the buffer pBuf to pPayload.
**
** SQLITE_OK is returned on success, otherwise an error code.
*/
static int copyPayload(
  void *pPayload,           /* Pointer to page data */
  void *pBuf,               /* Pointer to buffer */
  int nByte,                /* Number of bytes to copy */
  int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
  DbPage *pDbPage           /* Page containing pPayload */
){
  if( eOp ){
    /* Copy data from buffer to page (a write operation) */
    int rc = sqlite3PagerWrite(pDbPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    memcpy(pPayload, pBuf, nByte);
  }else{
    /* Copy data from page to buffer (a read operation) */
    memcpy(pBuf, pPayload, nByte);
  }
  return SQLITE_OK;
}

/*
** This function is used to read or overwrite payload information
** for the entry that the pCur cursor is pointing to. The eOp
** argument is interpreted as follows:
**
**   0: The operation is a read. Populate the overflow cache.
**   1: The operation is a write. Populate the overflow cache.
**   2: The operation is a read. Do not populate the overflow cache.
**
** A total of "amt" bytes are read or written beginning at "offset".
** Data is read to or from the buffer pBuf.
**
** The content being read or written might appear on the main page
** or be scattered out on multiple overflow pages.
**
** If the current cursor entry uses one or more overflow pages and the
** eOp argument is not 2, this function may allocate space for and lazily 
** populates the overflow page-list cache array (BtCursor.aOverflow). 
** Subsequent calls use this cache to make seeking to the supplied offset 
** more efficient.
**
** Once an overflow page-list cache has been allocated, it may be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.
**
**   * An incremental vacuum,
**   * A commit in auto_vacuum="full" mode,
**   * Creating a table (may require moving an overflow page).
*/
static int accessPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 offset,          /* Begin reading this far into payload */
  u32 amt,             /* Read this many bytes */
  unsigned char *pBuf, /* Write the bytes into this buffer */ 
  int eOp              /* zero to read. non-zero to write. */
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;
  int iIdx = 0;
  MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
  BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  unsigned char * const pBufStart = pBuf;
  int bEnd;                                 /* True if reading to end of data */
#endif

  assert( pPage );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  assert( cursorHoldsMutex(pCur) );
  assert( eOp!=2 || offset==0 );    /* Always start from beginning for eOp==2 */

  getCellInfo(pCur);
  aPayload = pCur->info.pPayload;
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  bEnd = offset+amt==pCur->info.nPayload;
#endif
  assert( offset+amt <= pCur->info.nPayload );

  assert( aPayload > pPage->aData );
  if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
    /* Trying to read or write past the end of the data is an error.  The
    ** conditional above is really:
    **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
    ** but is recast into its current form to avoid integer overflow problems
    */
    return SQLITE_CORRUPT_BKPT;
  }

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
    if( a+offset>pCur->info.nLocal ){
      a = pCur->info.nLocal - offset;
    }
    rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
    offset = 0;
    pBuf += a;
    amt -= a;
  }else{
    offset -= pCur->info.nLocal;
  }


  if( rc==SQLITE_OK && amt>0 ){
    const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);

    /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
    ** Except, do not allocate aOverflow[] for eOp==2.
    **
    ** The aOverflow[] array is sized at one entry for each overflow page
    ** in the overflow chain. The page number of the first overflow page is
    ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
    ** means "not yet known" (the cache is lazily populated).
    */
    if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      if( nOvfl>pCur->nOvflAlloc ){
        Pgno *aNew = (Pgno*)sqlite3Realloc(
            pCur->aOverflow, nOvfl*2*sizeof(Pgno)
        );
        if( aNew==0 ){
          rc = SQLITE_NOMEM_BKPT;
        }else{
          pCur->nOvflAlloc = nOvfl*2;
          pCur->aOverflow = aNew;
        }
      }
      if( rc==SQLITE_OK ){
        memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
        pCur->curFlags |= BTCF_ValidOvfl;
      }
    }

    /* If the overflow page-list cache has been allocated and the
    ** entry for the first required overflow page is valid, skip
    ** directly to it.
    */
    if( (pCur->curFlags & BTCF_ValidOvfl)!=0
     && pCur->aOverflow[offset/ovflSize]
    ){
      iIdx = (offset/ovflSize);
      nextPage = pCur->aOverflow[iIdx];
      offset = (offset%ovflSize);
    }

    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){

      /* If required, populate the overflow page-list cache. */
      if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
        assert( pCur->aOverflow[iIdx]==0
                || pCur->aOverflow[iIdx]==nextPage
                || CORRUPT_DB );
        pCur->aOverflow[iIdx] = nextPage;
      }

      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page
        ** number for the next page in the overflow chain. The page
        ** data is not required. So first try to lookup the overflow
        ** page-list cache, if any, then fall back to the getOverflowPage()
        ** function.
        **
        ** Note that the aOverflow[] array must be allocated because eOp!=2
        ** here.  If eOp==2, then offset==0 and this branch is never taken.
        */
        assert( eOp!=2 );
        assert( pCur->curFlags & BTCF_ValidOvfl );
        assert( pCur->pBtree->db==pBt->db );
        if( pCur->aOverflow[iIdx+1] ){
          nextPage = pCur->aOverflow[iIdx+1];
        }else{
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        }
        offset -= ovflSize;
      }else{
        /* Need to read this page properly. It contains some of the
        ** range of data that is being read (eOp==0) or written (eOp!=0).
        */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
        sqlite3_file *fd;
#endif
        int a = amt;
        if( a + offset > ovflSize ){
          a = ovflSize - offset;
        }

#ifdef SQLITE_DIRECT_OVERFLOW_READ
        /* If all the following are true:
        **
        **   1) this is a read operation, and 
        **   2) data is required from the start of this overflow page, and
        **   3) the database is file-backed, and
        **   4) there is no open write-transaction, and
        **   5) the database is not a WAL database,
        **   6) all data from the page is being read.
        **   7) at least 4 bytes have already been read into the output buffer 
        **
        ** then data can be read directly from the database file into the
        ** output buffer, bypassing the page-cache altogether. This speeds
        ** up loading large records that span many overflow pages.
        */
        if( (eOp&0x01)==0                                      /* (1) */
         && offset==0                                          /* (2) */
         && (bEnd || a==ovflSize)                              /* (6) */
         && pBt->inTransaction==TRANS_READ                     /* (4) */
         && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
         && pBt->pPage1->aData[19]==0x01                       /* (5) */
         && &pBuf[-4]>=pBufStart                               /* (7) */
        ){
          u8 aSave[4];
          u8 *aWrite = &pBuf[-4];
          assert( aWrite>=pBufStart );                         /* hence (7) */
          memcpy(aSave, aWrite, 4);
          rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
              ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
            sqlite3PagerUnref(pDbPage);
            offset = 0;
          }
        }
        amt -= a;
        pBuf += a;
      }
    }
  }

  if( rc==SQLITE_OK && amt>0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  return rc;
}

/*
** Read part of the key associated with cursor pCur.  Exactly
** "amt" bytes will be transferred into pBuf[].  The transfer
** begins at "offset".
**
** The caller must ensure that pCur is pointing to a valid row
** in the table.
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}

/*
** Read part of the data associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;

#ifndef SQLITE_OMIT_INCRBLOB
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
#endif

  assert( cursorOwnsBtShared(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 0);
  }
  return rc;
}

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if index btrees (pPage->intKey==0) and is the data for
** table btrees (pPage->intKey==1). The number of bytes of available
** key/data is written into *pAmt.  If *pAmt==0, then the value
** returned will not be a valid pointer.
**
** This routine is an optimization.  It is common for the entire key
** and data to fit on the local page and for there to be no overflow
** pages.  When that is so, this routine can be used to access the
** key and data without making a copy.  If the key and/or data spills
** onto overflow pages, then accessPayload() must be used to reassemble
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
** page of the database.  The data might change or move the next time
** any btree routine is called.
*/
static const void *fetchPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 *pAmt            /* Write the number of available bytes here */
){
  u32 amt;
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
  assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
  assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
  amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
  if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
  *pAmt = amt;
  return (void*)pCur->info.pPayload;
}


/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page.  Write the number of available bytes into *pAmt.
**
** The pointer returned is ephemeral.  The key/data may move
** or be destroyed on the next call to any Btree routine,
** including calls from other threads against the same cache.
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
  return fetchPayload(pCur, pAmt);
}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
**
** This function returns SQLITE_CORRUPT if the page-header flags field of
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  BtShared *pBt = pCur->pBt;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  pCur->iPage++;
  pCur->aiIdx[pCur->iPage] = 0;
  return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
                        pCur, pCur->curPagerFlags);
}

#if SQLITE_DEBUG
/*
** Page pParent is an internal (non-leaf) tree page. This function 
** asserts that page number iChild is the left-child if the iIdx'th
** cell in page pParent. Or, if iIdx is equal to the total number of
** cells in pParent, that page number iChild is the right-child of
** the page.
*/
static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
  if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
                            ** in a corrupt database */
  assert( iIdx<=pParent->nCell );
  if( iIdx==pParent->nCell ){
    assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
  }else{
    assert( get4byte(findCell(pParent, iIdx))==iChild );
  }
}
#else
#  define assertParentIndex(x,y,z) 
#endif

/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>0 );
  assert( pCur->apPage[pCur->iPage] );
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
  );
  testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  releasePageNotNull(pCur->apPage[pCur->iPage--]);
}

/*
** Move the cursor to point to the root page of its b-tree structure.
**
** If the table has a virtual root page, then the cursor is moved to point
** to the virtual root page instead of the actual root page. A table has a
** virtual root page when the actual root page contains no cells and a 
** single child page. This can only happen with the table rooted at page 1.
**
** If the b-tree structure is empty, the cursor state is set to 
** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
** cell located on the root (or virtual root) page and the cursor state
** is set to CURSOR_VALID.
**
** If this function returns successfully, it may be assumed that the
** page-header flags indicate that the [virtual] root-page is the expected 
** kind of b-tree page (i.e. if when opening the cursor the caller did not
** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
** indicating a table b-tree, or if the caller did specify a KeyInfo 
** structure the flags byte is set to 0x02 or 0x0A, indicating an index
** b-tree).
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;

  assert( cursorOwnsBtShared(pCur) );
  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  if( pCur->eState>=CURSOR_REQUIRESEEK ){
    if( pCur->eState==CURSOR_FAULT ){
      assert( pCur->skipNext!=SQLITE_OK );
      return pCur->skipNext;
    }
    sqlite3BtreeClearCursor(pCur);
  }

  if( pCur->iPage>=0 ){
    while( pCur->iPage ){
      assert( pCur->apPage[pCur->iPage]!=0 );
      releasePageNotNull(pCur->apPage[pCur->iPage--]);
    }
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{
    assert( pCur->iPage==(-1) );
    rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
                        0, pCur->curPagerFlags);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;
    pCur->curIntKey = pCur->apPage[0]->intKey;
  }
  pRoot = pCur->apPage[0];
  assert( pRoot->pgno==pCur->pgnoRoot );

  /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
  ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
  ** NULL, the caller expects a table b-tree. If this is not the case,
  ** return an SQLITE_CORRUPT error. 
  **
  ** Earlier versions of SQLite assumed that this test could not fail
  ** if the root page was already loaded when this function was called (i.e.
  ** if pCur->iPage>=0). But this is not so if the database is corrupted 
  ** in such a way that page pRoot is linked into a second b-tree table 
  ** (or the freelist).  */
  assert( pRoot->intKey==1 || pRoot->intKey==0 );
  if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
    return SQLITE_CORRUPT_BKPT;
  }

  pCur->aiIdx[0] = 0;
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);

  if( pRoot->nCell>0 ){
    pCur->eState = CURSOR_VALID;
  }else if( !pRoot->leaf ){
    Pgno subpage;
    if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
    subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
    pCur->eState = CURSOR_VALID;
    rc = moveToChild(pCur, subpage);
  }else{
    pCur->eState = CURSOR_INVALID;
  }
  return rc;
}

/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
**
** The left-most leaf is the one with the smallest key - the first
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
}

/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing.  Notice the difference
** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
**
** The right-most entry is the one with the largest key - the last
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage = 0;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->aiIdx[pCur->iPage] = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
  assert( pCur->info.nSize==0 );
  assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->apPage[pCur->iPage]->nCell>0 );
      *pRes = 0;
      rc = moveToLeftmost(pCur);
    }
  }
  return rc;
}

/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );

  /* If the cursor already points to the last entry, this is a no-op. */
  if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
#ifdef SQLITE_DEBUG
    /* This block serves to assert() that the cursor really does point 
    ** to the last entry in the b-tree. */
    int ii;
    for(ii=0; ii<pCur->iPage; ii++){
      assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
    }
    assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
    assert( pCur->apPage[pCur->iPage]->leaf );
#endif
    return SQLITE_OK;
  }

  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( CURSOR_INVALID==pCur->eState ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->eState==CURSOR_VALID );
      *pRes = 0;
      rc = moveToRightmost(pCur);
      if( rc==SQLITE_OK ){
        pCur->curFlags |= BTCF_AtLast;
      }else{
        pCur->curFlags &= ~BTCF_AtLast;
      }
   
    }
  }
  return rc;
}

/* Move the cursor so that it points to an entry near the key 
** specified by pIdxKey or intKey.   Return a success code.
**
** For INTKEY tables, the intKey parameter is used.  pIdxKey 
** must be NULL.  For index tables, pIdxKey is used and intKey
** is ignored.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present.  The cursor might point to an entry that comes
** before or after the key.
**
** An integer is written into *pRes which is the result of
** comparing the key with the entry to which the cursor is 
** pointing.  The meaning of the integer written into
** *pRes is as follows:
**
**     *pRes<0      The cursor is left pointing at an entry that
**                  is smaller than intKey/pIdxKey or if the table is empty
**                  and the cursor is therefore left point to nothing.
**
**     *pRes==0     The cursor is left pointing at an entry that
**                  exactly matches intKey/pIdxKey.
**
**     *pRes>0      The cursor is left pointing at an entry that
**                  is larger than intKey/pIdxKey.
**
** For index tables, the pIdxKey->eqSeen field is set to 1 if there
** exists an entry in the table that exactly matches pIdxKey.  
*/
int sqlite3BtreeMovetoUnpacked(
  BtCursor *pCur,          /* The cursor to be moved */
  UnpackedRecord *pIdxKey, /* Unpacked index key */
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
){
  int rc;
  RecordCompare xRecordCompare;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
  assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pIdxKey==0
   && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
  ){
    if( pCur->info.nKey==intKey ){
      *pRes = 0;
      return SQLITE_OK;
    }
    if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
      *pRes = -1;
      return SQLITE_OK;
    }
  }

  if( pIdxKey ){
    xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
    pIdxKey->errCode = 0;
    assert( pIdxKey->default_rc==1 
         || pIdxKey->default_rc==0 
         || pIdxKey->default_rc==-1
    );
  }else{
    xRecordCompare = 0; /* All keys are integers */
  }

  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
  assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey==pCur->curIntKey );
  assert( pCur->curIntKey || pIdxKey );
  for(;;){
    int lwr, upr, idx, c;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
    u8 *pCell;                          /* Pointer to current cell in pPage */

    /* pPage->nCell must be greater than zero. If this is the root-page
    ** the cursor would have been INVALID above and this for(;;) loop
    ** not run. If this is not the root-page, then the moveToChild() routine
    ** would have already detected db corruption. Similarly, pPage must
    ** be the right kind (index or table) of b-tree page. Otherwise
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
    pCur->aiIdx[pCur->iPage] = (u16)idx;
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCellPastPtr(pPage, idx);
        if( pPage->intKeyLeaf ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){
          lwr = idx+1;
          if( lwr>upr ){ c = -1; break; }
        }else if( nCellKey>intKey ){
          upr = idx-1;
          if( lwr>upr ){ c = +1; break; }
        }else{
          assert( nCellKey==intKey );
          pCur->curFlags |= BTCF_ValidNKey;
          pCur->info.nKey = nCellKey;
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          if( !pPage->leaf ){
            lwr = idx;
            goto moveto_next_layer;
          }else{
            *pRes = 0;
            rc = SQLITE_OK;
            goto moveto_finish;
          }
        }
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
      }
    }else{
      for(;;){
        int nCell;  /* Size of the pCell cell in bytes */
        pCell = findCellPastPtr(pPage, idx);

        /* The maximum supported page-size is 65536 bytes. This means that
        ** the maximum number of record bytes stored on an index B-Tree
        ** page is less than 16384 bytes and may be stored as a 2-byte
        ** varint. This information is used to attempt to avoid parsing 
        ** the entire cell by checking for the cases where the record is 
        ** stored entirely within the b-tree page by inspecting the first 
        ** 2 bytes of the cell.
        */
        nCell = pCell[0];
        if( nCell<=pPage->max1bytePayload ){
          /* This branch runs if the record-size field of the cell is a
          ** single byte varint and the record fits entirely on the main
          ** b-tree page.  */
          testcase( pCell+nCell+1==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
        }else if( !(pCell[1] & 0x80) 
          && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
        ){
          /* The record-size field is a 2 byte varint and the record 
          ** fits entirely on the main b-tree page.  */
          testcase( pCell+nCell+2==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
        }else{
          /* The record flows over onto one or more overflow pages. In
          ** this case the whole cell needs to be parsed, a buffer allocated
          ** and accessPayload() used to retrieve the record into the
          ** buffer before VdbeRecordCompare() can be called. 
          **
          ** If the record is corrupt, the xRecordCompare routine may read
          ** up to two varints past the end of the buffer. An extra 18 
          ** bytes of padding is allocated at the end of the buffer in
          ** case this happens.  */
          void *pCellKey;
          u8 * const pCellBody = pCell - pPage->childPtrSize;
          pPage->xParseCell(pPage, pCellBody, &pCur->info);
          nCell = (int)pCur->info.nKey;
          testcase( nCell<0 );   /* True if key size is 2^32 or more */
          testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
          testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
          testcase( nCell==2 );  /* Minimum legal index key size */
          if( nCell<2 ){
            rc = SQLITE_CORRUPT_BKPT;
            goto moveto_finish;
          }
          pCellKey = sqlite3Malloc( nCell+18 );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM_BKPT;
            goto moveto_finish;
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite3_free(pCellKey);
        }
        assert( 
            (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
         && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
        );
        if( c<0 ){
          lwr = idx+1;
        }else if( c>0 ){
          upr = idx-1;
        }else{
          assert( c==0 );
          *pRes = 0;
          rc = SQLITE_OK;
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
          goto moveto_finish;
        }
        if( lwr>upr ) break;
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
      }
    }
    assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
    assert( pPage->isInit );
    if( pPage->leaf ){
      assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
      pCur->aiIdx[pCur->iPage] = (u16)idx;
      *pRes = c;
      rc = SQLITE_OK;
      goto moveto_finish;
    }
moveto_next_layer:
    if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    }else{
      chldPg = get4byte(findCell(pPage, lwr));
    }
    pCur->aiIdx[pCur->iPage] = (u16)lwr;
    rc = moveToChild(pCur, chldPg);
    if( rc ) break;
  }
moveto_finish:
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  return rc;
}


/*
** Return TRUE if the cursor is not pointing at an entry of the table.
**
** TRUE will be returned after a call to sqlite3BtreeNext() moves
** past the last entry in the table or sqlite3BtreePrev() moves past
** the first entry.  TRUE is also returned if the table is empty.
*/
int sqlite3BtreeEof(BtCursor *pCur){
  /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  ** have been deleted? This API will need to change to return an error code
  ** as well as the boolean result value.
  */
  return (CURSOR_VALID!=pCur->eState);
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
**
** The main entry point is sqlite3BtreeNext().  That routine is optimized
** for the common case of merely incrementing the cell counter BtCursor.aiIdx
** to the next cell on the current page.  The (slower) btreeNext() helper
** routine is called when it is necessary to move to a different page or
** to restore the cursor.
**
** The calling function will set *pRes to 0 or 1.  The initial *pRes value
** will be 1 if the cursor being stepped corresponds to an SQL index and
** if this routine could have been skipped if that SQL index had been
** a unique index.  Otherwise the caller will have set *pRes to zero.
** Zero is the common case. The btree implementation is free to use the
** initial *pRes value as a hint to improve performance, but the current
** SQLite btree implementation does not. (Note that the comdb2 btree
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
  int rc;
  int idx;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( *pRes==0 );
  if( pCur->eState!=CURSOR_VALID ){
    assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( CURSOR_INVALID==pCur->eState ){
      *pRes = 1;
      return SQLITE_OK;
    }
    if( pCur->skipNext ){
      assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
      pCur->eState = CURSOR_VALID;
      if( pCur->skipNext>0 ){
        pCur->skipNext = 0;
        return SQLITE_OK;
      }
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->apPage[pCur->iPage];
  idx = ++pCur->aiIdx[pCur->iPage];
  assert( pPage->isInit );

  /* If the database file is corrupt, it is possible for the value of idx 
  ** to be invalid here. This can only occur if a second cursor modifies
  ** the page while cursor pCur is holding a reference to it. Which can
  ** only happen if the database is corrupt in such a way as to link the
  ** page into more than one b-tree structure. */
  testcase( idx>pPage->nCell );

  if( idx>=pPage->nCell ){
    if( !pPage->leaf ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
      if( rc ) return rc;
      return moveToLeftmost(pCur);
    }
    do{
      if( pCur->iPage==0 ){
        *pRes = 1;
        pCur->eState = CURSOR_INVALID;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->apPage[pCur->iPage];
    }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
    if( pPage->intKey ){
      return sqlite3BtreeNext(pCur, pRes);
    }else{
      return SQLITE_OK;
    }
  }
  if( pPage->leaf ){
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }
}
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  MemPage *pPage;
  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  *pRes = 0;
  if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
  pPage = pCur->apPage[pCur->iPage];
  if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
    pCur->aiIdx[pCur->iPage]--;
    return btreeNext(pCur, pRes);
  }
  if( pPage->leaf ){
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }
}

/*
** Step the cursor to the back to the previous entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
**
** The main entry point is sqlite3BtreePrevious().  That routine is optimized
** for the common case of merely decrementing the cell counter BtCursor.aiIdx
** to the previous cell on the current page.  The (slower) btreePrevious()
** helper routine is called when it is necessary to move to a different page
** or to restore the cursor.
**
** The calling function will set *pRes to 0 or 1.  The initial *pRes value
** will be 1 if the cursor being stepped corresponds to an SQL index and
** if this routine could have been skipped if that SQL index had been
** a unique index.  Otherwise the caller will have set *pRes to zero.
** Zero is the common case. The btree implementation is free to use the
** initial *pRes value as a hint to improve performance, but the current
** SQLite btree implementation does not. (Note that the comdb2 btree
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
  assert( pCur->info.nSize==0 );
  if( pCur->eState!=CURSOR_VALID ){
    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( CURSOR_INVALID==pCur->eState ){
      *pRes = 1;
      return SQLITE_OK;
    }
    if( pCur->skipNext ){
      assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
      pCur->eState = CURSOR_VALID;
      if( pCur->skipNext<0 ){
        pCur->skipNext = 0;
        return SQLITE_OK;
      }
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->isInit );
  if( !pPage->leaf ){
    int idx = pCur->aiIdx[pCur->iPage];
    rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
    if( rc ) return rc;
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->aiIdx[pCur->iPage]==0 ){
      if( pCur->iPage==0 ){
        pCur->eState = CURSOR_INVALID;
        *pRes = 1;
        return SQLITE_OK;
      }
      moveToParent(pCur);
    }
    assert( pCur->info.nSize==0 );
    assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );

    pCur->aiIdx[pCur->iPage]--;
    pPage = pCur->apPage[pCur->iPage];
    if( pPage->intKey && !pPage->leaf ){
      rc = sqlite3BtreePrevious(pCur, pRes);
    }else{
      rc = SQLITE_OK;
    }
  }
  return rc;
}
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  *pRes = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
  pCur->info.nSize = 0;
  if( pCur->eState!=CURSOR_VALID
   || pCur->aiIdx[pCur->iPage]==0
   || pCur->apPage[pCur->iPage]->leaf==0
  ){
    return btreePrevious(pCur, pRes);
  }
  pCur->aiIdx[pCur->iPage]--;
  return SQLITE_OK;
}

/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
** has already been called on the new page.)  The new page has also
** been referenced and the calling routine is responsible for calling
** sqlite3PagerUnref() on the new page when it is done.
**
** SQLITE_OK is returned on success.  Any other return value indicates
** an error.  *ppPage is set to NULL in the event of an error.
**
** If the "nearby" parameter is not 0, then an effort is made to 
** locate a page close to the page number "nearby".  This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
**
** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
** anywhere on the free-list, then it is guaranteed to be returned.  If
** eMode is BTALLOC_LT then the page returned will be less than or equal
** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
** are no restrictions on which page is returned.
*/
static int allocateBtreePage(
  BtShared *pBt,         /* The btree */
  MemPage **ppPage,      /* Store pointer to the allocated page here */
  Pgno *pPgno,           /* Store the page number here */
  Pgno nearby,           /* Search for a page near this one */
  u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
){
  MemPage *pPage1;
  int rc;
  u32 n;     /* Number of pages on the freelist */
  u32 k;     /* Number of leaves on the trunk of the freelist */
  MemPage *pTrunk = 0;
  MemPage *pPrevTrunk = 0;
  Pgno mxPage;     /* Total size of the database file */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
  pPage1 = pBt->pPage1;
  mxPage = btreePagecount(pBt);
  /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
  ** stores stores the total number of pages on the freelist. */
  n = get4byte(&pPage1->aData[36]);
  testcase( n==mxPage-1 );
  if( n>=mxPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
    Pgno iTrunk;
    u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
    u32 nSearch = 0;   /* Count of the number of search attempts */
    
    /* If eMode==BTALLOC_EXACT and a query of the pointer-map
    ** shows that the page 'nearby' is somewhere on the free-list, then
    ** the entire-list will be searched for that page.
    */
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( eMode==BTALLOC_EXACT ){
      if( nearby<=mxPage ){
        u8 eType;
        assert( nearby>0 );
        assert( pBt->autoVacuum );
        rc = ptrmapGet(pBt, nearby, &eType, 0);
        if( rc ) return rc;
        if( eType==PTRMAP_FREEPAGE ){
          searchList = 1;
        }
      }
    }else if( eMode==BTALLOC_LE ){
      searchList = 1;
    }
#endif

    /* Decrement the free-list count by 1. Set iTrunk to the index of the
    ** first free-list trunk page. iPrevTrunk is initially 1.
    */
    rc = sqlite3PagerWrite(pPage1->pDbPage);
    if( rc ) return rc;
    put4byte(&pPage1->aData[36], n-1);

    /* The code within this loop is run only once if the 'searchList' variable
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
    ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){
        /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
        ** is the page number of the next freelist trunk page in the list or
        ** zero if this is the last freelist trunk page. */
        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{
        /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
        ** stores the page number of the first page of the freelist, or zero if
        ** the freelist is empty. */
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage || nSearch++ > n ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );
      /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
      ** is the number of leaf page pointers to follow. */
      k = get4byte(&pTrunk->aData[4]);
      if( k==0 && !searchList ){
        /* The trunk has no leaves and the list is not being searched. 
        ** So extract the trunk page itself and use it as the newly 
        ** allocated page */
        assert( pPrevTrunk==0 );
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        *pPgno = iTrunk;
        memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
        *ppPage = pTrunk;
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
      }else if( k>(u32)(pBt->usableSize/4 - 2) ){
        /* Value of k is out of range.  Database corruption */
        rc = SQLITE_CORRUPT_BKPT;
        goto end_allocate_page;
#ifndef SQLITE_OMIT_AUTOVACUUM
      }else if( searchList 
            && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 
      ){
        /* The list is being searched and this trunk page is the page
        ** to allocate, regardless of whether it has leaves.
        */
        *pPgno = iTrunk;
        *ppPage = pTrunk;
        searchList = 0;
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        if( k==0 ){
          if( !pPrevTrunk ){
            memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
          }else{
            rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
            if( rc!=SQLITE_OK ){
              goto end_allocate_page;
            }
            memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
          }
        }else{
          /* The trunk page is required by the caller but it contains 
          ** pointers to free-list leaves. The first leaf becomes a trunk
          ** page in this case.
          */
          MemPage *pNewTrunk;
          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
          if( iNewTrunk>mxPage ){ 
            rc = SQLITE_CORRUPT_BKPT;
            goto end_allocate_page;
          }
          testcase( iNewTrunk==mxPage );
          rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
          if( rc!=SQLITE_OK ){
            goto end_allocate_page;
          }
          rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
          if( rc!=SQLITE_OK ){
            releasePage(pNewTrunk);
            goto end_allocate_page;
          }
          memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
          put4byte(&pNewTrunk->aData[4], k-1);
          memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
          releasePage(pNewTrunk);
          if( !pPrevTrunk ){
            assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
            put4byte(&pPage1->aData[32], iNewTrunk);
          }else{
            rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
            if( rc ){
              goto end_allocate_page;
            }
            put4byte(&pPrevTrunk->aData[0], iNewTrunk);
          }
        }
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
#endif
      }else if( k>0 ){
        /* Extract a leaf from the trunk */
        u32 closest;
        Pgno iPage;
        unsigned char *aData = pTrunk->aData;
        if( nearby>0 ){
          u32 i;
          closest = 0;
          if( eMode==BTALLOC_LE ){
            for(i=0; i<k; i++){
              iPage = get4byte(&aData[8+i*4]);
              if( iPage<=nearby ){
                closest = i;
                break;
              }
            }
          }else{
            int dist;
            dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
            for(i=1; i<k; i++){
              int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
              if( d2<dist ){
                closest = i;
                dist = d2;
              }
            }
          }
        }else{
          closest = 0;
        }

        iPage = get4byte(&aData[8+closest*4]);
        testcase( iPage==mxPage );
        if( iPage>mxPage ){
          rc = SQLITE_CORRUPT_BKPT;
          goto end_allocate_page;
        }
        testcase( iPage==mxPage );
        if( !searchList 
         || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 
        ){
          int noContent;
          *pPgno = iPage;
          TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
                 ": %d more free pages\n",
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
          rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
              *ppPage = 0;
            }
          }
          searchList = 0;
        }
      }
      releasePage(pPrevTrunk);
      pPrevTrunk = 0;
    }while( searchList );
  }else{
    /* There are no pages on the freelist, so append a new page to the
    ** database image.
    **
    ** Normally, new pages allocated by this block can be requested from the
    ** pager layer with the 'no-content' flag set. This prevents the pager
    ** from trying to read the pages content from disk. However, if the
    ** current transaction has already run one or more incremental-vacuum
    ** steps, then the page we are about to allocate may contain content
    ** that is required in the event of a rollback. In this case, do
    ** not set the no-content flag. This causes the pager to load and journal
    ** the current page content before overwriting it.
    **
    ** Note that the pager will not actually attempt to load or journal 
    ** content for any page that really does lie past the end of the database
    ** file on disk. So the effects of disabling the no-content optimization
    ** here are confined to those pages that lie between the end of the
    ** database image and the end of the database file.
    */
    int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;

    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      MemPage *pPg = 0;
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
      assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
      rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pPg->pDbPage);
        releasePage(pPg);
      }
      if( rc ) return rc;
      pBt->nPage++;
      if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
    }
#endif
    put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
    *pPgno = pBt->nPage;

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
    if( rc ) return rc;
    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
      *ppPage = 0;
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }

  assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );

end_allocate_page:
  releasePage(pTrunk);
  releasePage(pPrevTrunk);
  assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
  assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
  return rc;
}

/*
** This function is used to add page iPage to the database file free-list. 
** It is assumed that the page is not already a part of the free-list.
**
** The value passed as the second argument to this function is optional.
** If the caller happens to have a pointer to the MemPage object 
** corresponding to page iPage handy, it may pass it as the second value. 
** Otherwise, it may pass NULL.
**
** If a pointer to a MemPage object is passed as the second argument,
** its reference count is not altered by this function.
*/
static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
  MemPage *pTrunk = 0;                /* Free-list trunk page */
  Pgno iTrunk = 0;                    /* Page number of free-list trunk page */ 
  MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
  MemPage *pPage;                     /* Page being freed. May be NULL. */
  int rc;                             /* Return Code */
  int nFree;                          /* Initial number of pages on free-list */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( CORRUPT_DB || iPage>1 );
  assert( !pMemPage || pMemPage->pgno==iPage );

  if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
  if( pMemPage ){
    pPage = pMemPage;
    sqlite3PagerRef(pPage->pDbPage);
  }else{
    pPage = btreePageLookup(pBt, iPage);
  }

  /* Increment the free page count on pPage1 */
  rc = sqlite3PagerWrite(pPage1->pDbPage);
  if( rc ) goto freepage_out;
  nFree = get4byte(&pPage1->aData[36]);
  put4byte(&pPage1->aData[36], nFree+1);

  if( pBt->btsFlags & BTS_SECURE_DELETE ){
    /* If the secure_delete option is enabled, then
    ** always fully overwrite deleted information with zeros.
    */
    if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
     ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
    ){
      goto freepage_out;
    }
    memset(pPage->aData, 0, pPage->pBt->pageSize);
  }

  /* If the database supports auto-vacuum, write an entry in the pointer-map
  ** to indicate that the page is free.
  */
  if( ISAUTOVACUUM ){
    ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
    if( rc ) goto freepage_out;
  }

  /* Now manipulate the actual database free-list structure. There are two
  ** possibilities. If the free-list is currently empty, or if the first
  ** trunk page in the free-list is full, then this page will become a
  ** new free-list trunk page. Otherwise, it will become a leaf of the
  ** first trunk page in the current free-list. This block tests if it
  ** is possible to add the page as a new free-list leaf.
  */
  if( nFree!=0 ){
    u32 nLeaf;                /* Initial number of leaf cells on trunk page */

    iTrunk = get4byte(&pPage1->aData[32]);
    rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
    if( rc!=SQLITE_OK ){
      goto freepage_out;
    }

    nLeaf = get4byte(&pTrunk->aData[4]);
    assert( pBt->usableSize>32 );
    if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
      rc = SQLITE_CORRUPT_BKPT;
      goto freepage_out;
    }
    if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
      /* In this case there is room on the trunk page to insert the page
      ** being freed as a new leaf.
      **
      ** Note that the trunk page is not really full until it contains
      ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
      ** coded.  But due to a coding error in versions of SQLite prior to
      ** 3.6.0, databases with freelist trunk pages holding more than
      ** usableSize/4 - 8 entries will be reported as corrupt.  In order
      ** to maintain backwards compatibility with older versions of SQLite,
      ** we will continue to restrict the number of entries to usableSize/4 - 8
      ** for now.  At some point in the future (once everyone has upgraded
      ** to 3.6.0 or later) we should consider fixing the conditional above
      ** to read "usableSize/4-2" instead of "usableSize/4-8".
      **
      ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
      ** avoid using the last six entries in the freelist trunk page array in
      ** order that database files created by newer versions of SQLite can be
      ** read by older versions of SQLite.
      */
      rc = sqlite3PagerWrite(pTrunk->pDbPage);
      if( rc==SQLITE_OK ){
        put4byte(&pTrunk->aData[4], nLeaf+1);
        put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
        if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
          sqlite3PagerDontWrite(pPage->pDbPage);
        }
        rc = btreeSetHasContent(pBt, iPage);
      }
      TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
      goto freepage_out;
    }
  }

  /* If control flows to this point, then it was not possible to add the
  ** the page being freed as a leaf page of the first trunk in the free-list.
  ** Possibly because the free-list is empty, or possibly because the 
  ** first trunk in the free-list is full. Either way, the page being freed
  ** will become the new first trunk page in the free-list.
  */
  if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
    goto freepage_out;
  }
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc!=SQLITE_OK ){
    goto freepage_out;
  }
  put4byte(pPage->aData, iTrunk);
  put4byte(&pPage->aData[4], 0);
  put4byte(&pPage1->aData[32], iPage);
  TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));

freepage_out:
  if( pPage ){
    pPage->isInit = 0;
  }
  releasePage(pPage);
  releasePage(pTrunk);
  return rc;
}
static void freePage(MemPage *pPage, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
  }
}

/*
** Free any overflow pages associated with the given Cell.  Write the
** local Cell size (the number of bytes on the original page, omitting
** overflow) into *pnSize.
*/
static int clearCell(
  MemPage *pPage,          /* The page that contains the Cell */
  unsigned char *pCell,    /* First byte of the Cell */
  u16 *pnSize              /* Write the size of the Cell here */
){
  BtShared *pBt = pPage->pBt;
  CellInfo info;
  Pgno ovflPgno;
  int rc;
  int nOvfl;
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->xParseCell(pPage, pCell, &info);
  *pnSize = info.nSize;
  if( info.nLocal==info.nPayload ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
    return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
  }
  ovflPgno = get4byte(pCell + info.nSize - 4);
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( nOvfl>0 || 
    (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
  );
  while( nOvfl-- ){
    Pgno iNext = 0;
    MemPage *pOvfl = 0;
    if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
      /* 0 is not a legal page number and page 1 cannot be an 
      ** overflow page. Therefore if ovflPgno<2 or past the end of the 
      ** file the database must be corrupt. */
      return SQLITE_CORRUPT_BKPT;
    }
    if( nOvfl ){
      rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
      if( rc ) return rc;
    }

    if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
     && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
    ){
      /* There is no reason any cursor should have an outstanding reference 
      ** to an overflow page belonging to a cell that is being deleted/updated.
      ** So if there exists more than one reference to this page, then it 
      ** must not really be an overflow page and the database must be corrupt. 
      ** It is helpful to detect this before calling freePage2(), as 
      ** freePage2() may zero the page contents if secure-delete mode is
      ** enabled. If this 'overflow' page happens to be a page that the
      ** caller is iterating through or using in some other way, this
      ** can be problematic.
      */
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = freePage2(pBt, pOvfl, ovflPgno);
    }

    if( pOvfl ){
      sqlite3PagerUnref(pOvfl->pDbPage);
    }
    if( rc ) return rc;
    ovflPgno = iNext;
  }
  return SQLITE_OK;
}

/*
** Create the byte sequence used to represent a cell on page pPage
** and write that byte sequence into pCell[].  Overflow pages are
** allocated and filled in as necessary.  The calling procedure
** is responsible for making sure sufficient space has been allocated
** for pCell[].
**
** Note that pCell does not necessary need to point to the pPage->aData
** area.  pCell might point to some temporary storage.  The cell will
** be constructed in this temporary area then copied into pPage->aData
** later.
*/
static int fillInCell(
  MemPage *pPage,                /* The page that contains the cell */
  unsigned char *pCell,          /* Complete text of the cell */
  const BtreePayload *pX,        /* Payload with which to construct the cell */
  int *pnSize                    /* Write cell size here */
){
  int nPayload;
  const u8 *pSrc;
  int nSrc, n, rc;
  int spaceLeft;
  MemPage *pOvfl = 0;
  MemPage *pToRelease = 0;
  unsigned char *pPrior;
  unsigned char *pPayload;
  BtShared *pBt = pPage->pBt;
  Pgno pgnoOvfl = 0;
  int nHeader;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );

  /* pPage is not necessarily writeable since pCell might be auxiliary
  ** buffer space that is separate from the pPage buffer area */
  assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
            || sqlite3PagerIswriteable(pPage->pDbPage) );

  /* Fill in the header. */
  nHeader = pPage->childPtrSize;
  if( pPage->intKey ){
    nPayload = pX->nData + pX->nZero;
    pSrc = pX->pData;
    nSrc = pX->nData;
    assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
    nHeader += putVarint32(&pCell[nHeader], nPayload);
    nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
  }else{
    assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
    nSrc = nPayload = (int)pX->nKey;
    pSrc = pX->pKey;
    nHeader += putVarint32(&pCell[nHeader], nPayload);
  }
  
  /* Fill in the payload */
  if( nPayload<=pPage->maxLocal ){
    n = nHeader + nPayload;
    testcase( n==3 );
    testcase( n==4 );
    if( n<4 ) n = 4;
    *pnSize = n;
    spaceLeft = nPayload;
    pPrior = pCell;
  }else{
    int mn = pPage->minLocal;
    n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
    testcase( n==pPage->maxLocal );
    testcase( n==pPage->maxLocal+1 );
    if( n > pPage->maxLocal ) n = mn;
    spaceLeft = n;
    *pnSize = n + nHeader + 4;
    pPrior = &pCell[nHeader+n];
  }
  pPayload = &pCell[nHeader];

  /* At this point variables should be set as follows:
  **
  **   nPayload           Total payload size in bytes
  **   pPayload           Begin writing payload here
  **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
  **                      that means content must spill into overflow pages.
  **   *pnSize            Size of the local cell (not counting overflow pages)
  **   pPrior             Where to write the pgno of the first overflow page
  **
  ** Use a call to btreeParseCellPtr() to verify that the values above
  ** were computed correctly.
  */
#if SQLITE_DEBUG
  {
    CellInfo info;
    pPage->xParseCell(pPage, pCell, &info);
    assert( nHeader==(int)(info.pPayload - pCell) );
    assert( info.nKey==pX->nKey );
    assert( *pnSize == info.nSize );
    assert( spaceLeft == info.nLocal );
  }
#endif

  /* Write the payload into the local Cell and any extra into overflow pages */
  while( nPayload>0 ){
    if( spaceLeft==0 ){
#ifndef SQLITE_OMIT_AUTOVACUUM
      Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
      if( pBt->autoVacuum ){
        do{
          pgnoOvfl++;
        } while( 
          PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 
        );
      }
#endif
      rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the database supports auto-vacuum, and the second or subsequent
      ** overflow page is being allocated, add an entry to the pointer-map
      ** for that page now. 
      **
      ** If this is the first overflow page, then write a partial entry 
      ** to the pointer-map. If we write nothing to this pointer-map slot,
      ** then the optimistic overflow chain processing in clearCell()
      ** may misinterpret the uninitialized values and delete the
      ** wrong pages from the database.
      */
      if( pBt->autoVacuum && rc==SQLITE_OK ){
        u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
        ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
        if( rc ){
          releasePage(pOvfl);
        }
      }
#endif
      if( rc ){
        releasePage(pToRelease);
        return rc;
      }

      /* If pToRelease is not zero than pPrior points into the data area
      ** of pToRelease.  Make sure pToRelease is still writeable. */
      assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );

      /* If pPrior is part of the data area of pPage, then make sure pPage
      ** is still writeable */
      assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
            || sqlite3PagerIswriteable(pPage->pDbPage) );

      put4byte(pPrior, pgnoOvfl);
      releasePage(pToRelease);
      pToRelease = pOvfl;
      pPrior = pOvfl->aData;
      put4byte(pPrior, 0);
      pPayload = &pOvfl->aData[4];
      spaceLeft = pBt->usableSize - 4;
    }
    n = nPayload;
    if( n>spaceLeft ) n = spaceLeft;

    /* If pToRelease is not zero than pPayload points into the data area
    ** of pToRelease.  Make sure pToRelease is still writeable. */
    assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );

    /* If pPayload is part of the data area of pPage, then make sure pPage
    ** is still writeable */
    assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
            || sqlite3PagerIswriteable(pPage->pDbPage) );

    if( nSrc>0 ){
      if( n>nSrc ) n = nSrc;
      assert( pSrc );
      memcpy(pPayload, pSrc, n);
    }else{
      memset(pPayload, 0, n);
    }
    nPayload -= n;
    pPayload += n;
    pSrc += n;
    nSrc -= n;
    spaceLeft -= n;
  }
  releasePage(pToRelease);
  return SQLITE_OK;
}

/*
** Remove the i-th cell from pPage.  This routine effects pPage only.
** The cell content is not freed or deallocated.  It is assumed that
** the cell content has been copied someplace else.  This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
  u32 pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */
  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;

  assert( idx>=0 && idx<pPage->nCell );
  assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  data = pPage->aData;
  ptr = &pPage->aCellIdx[2*idx];
  pc = get2byte(ptr);
  hdr = pPage->hdrOffset;
  testcase( pc==get2byte(&data[hdr+5]) );
  testcase( pc+sz==pPage->pBt->usableSize );
  if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  pPage->nCell--;
  if( pPage->nCell==0 ){
    memset(&data[hdr+1], 0, 4);
    data[hdr+7] = 0;
    put2byte(&data[hdr+5], pPage->pBt->usableSize);
    pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
                       - pPage->childPtrSize - 8;
  }else{
    memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
    put2byte(&data[hdr+3], pPage->nCell);
    pPage->nFree += 2;
  }
}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null.  Regardless of pTemp, allocate a new entry
** in pPage->apOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index. 
** Allocating a new entry in pPage->aCell[] implies that 
** pPage->nOverflow is incremented.
**
** *pRC must be SQLITE_OK when this routine is called.
*/
static void insertCell(
  MemPage *pPage,   /* Page into which we are copying */
  int i,            /* New cell becomes the i-th cell of the page */
  u8 *pCell,        /* Content of the new cell */
  int sz,           /* Bytes of content in pCell */
  u8 *pTemp,        /* Temp storage space for pCell, if needed */
  Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
  int *pRC          /* Read and write return code from here */
){
  int idx = 0;      /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  u8 *data;         /* The content of the whole page */
  u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */

  assert( *pRC==SQLITE_OK );
  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( MX_CELL(pPage->pBt)<=10921 );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
  assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
  assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  /* The cell should normally be sized correctly.  However, when moving a
  ** malformed cell from a leaf page to an interior page, if the cell size
  ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
  ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
  ** the term after the || in the following assert(). */
  assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
  if( pPage->nOverflow || sz+2>pPage->nFree ){
    if( pTemp ){
      memcpy(pTemp, pCell, sz);
      pCell = pTemp;
    }
    if( iChild ){
      put4byte(pCell, iChild);
    }
    j = pPage->nOverflow++;
    assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
    pPage->apOvfl[j] = pCell;
    pPage->aiOvfl[j] = (u16)i;

    /* When multiple overflows occur, they are always sequential and in
    ** sorted order.  This invariants arise because multiple overflows can
    ** only occur when inserting divider cells into the parent page during
    ** balancing, and the dividers are adjacent and sorted.
    */
    assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
    assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
  }else{
    int rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc!=SQLITE_OK ){
      *pRC = rc;
      return;
    }
    assert( sqlite3PagerIswriteable(pPage->pDbPage) );
    data = pPage->aData;
    assert( &data[pPage->cellOffset]==pPage->aCellIdx );
    rc = allocateSpace(pPage, sz, &idx);
    if( rc ){ *pRC = rc; return; }
    /* The allocateSpace() routine guarantees the following properties
    ** if it returns successfully */
    assert( idx >= 0 );
    assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
    assert( idx+sz <= (int)pPage->pBt->usableSize );
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx], pCell, sz);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    pIns = pPage->aCellIdx + i*2;
    memmove(pIns+2, pIns, 2*(pPage->nCell - i));
    put2byte(pIns, idx);
    pPage->nCell++;
    /* increment the cell count */
    if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
    assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.
      */
      ptrmapPutOvflPtr(pPage, pCell, pRC);
    }
#endif
  }
}

/*
** A CellArray object contains a cache of pointers and sizes for a
** consecutive sequence of cells that might be held on multiple pages.
*/
typedef struct CellArray CellArray;
struct CellArray {
  int nCell;              /* Number of cells in apCell[] */
  MemPage *pRef;          /* Reference page */
  u8 **apCell;            /* All cells begin balanced */
  u16 *szCell;            /* Local size of all cells in apCell[] */
};

/*
** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
** computed.
*/
static void populateCellCache(CellArray *p, int idx, int N){
  assert( idx>=0 && idx+N<=p->nCell );
  while( N>0 ){
    assert( p->apCell[idx]!=0 );
    if( p->szCell[idx]==0 ){
      p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
    }else{
      assert( CORRUPT_DB ||
              p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
    }
    idx++;
    N--;
  }
}

/*
** Return the size of the Nth element of the cell array
*/
static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
  assert( N>=0 && N<p->nCell );
  assert( p->szCell[N]==0 );
  p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
  return p->szCell[N];
}
static u16 cachedCellSize(CellArray *p, int N){
  assert( N>=0 && N<p->nCell );
  if( p->szCell[N] ) return p->szCell[N];
  return computeCellSize(p, N);
}

/*
** Array apCell[] contains pointers to nCell b-tree page cells. The 
** szCell[] array contains the size in bytes of each cell. This function
** replaces the current contents of page pPg with the contents of the cell
** array.
**
** Some of the cells in apCell[] may currently be stored in pPg. This
** function works around problems caused by this by making a copy of any 
** such cells before overwriting the page data.
**
** The MemPage.nFree field is invalidated by this function. It is the 
** responsibility of the caller to set it correctly.
*/
static int rebuildPage(
  MemPage *pPg,                   /* Edit this page */
  int nCell,                      /* Final number of cells on page */
  u8 **apCell,                    /* Array of cells */
  u16 *szCell                     /* Array of cell sizes */
){
  const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
  u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
  const int usableSize = pPg->pBt->usableSize;
  u8 * const pEnd = &aData[usableSize];
  int i;
  u8 *pCellptr = pPg->aCellIdx;
  u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
  u8 *pData;

  i = get2byte(&aData[hdr+5]);
  memcpy(&pTmp[i], &aData[i], usableSize - i);

  pData = pEnd;
  for(i=0; i<nCell; i++){
    u8 *pCell = apCell[i];
    if( SQLITE_WITHIN(pCell,aData,pEnd) ){
      pCell = &pTmp[pCell - aData];
    }
    pData -= szCell[i];
    put2byte(pCellptr, (pData - aData));
    pCellptr += 2;
    if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
    memcpy(pData, pCell, szCell[i]);
    assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
    testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
  }

  /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
  pPg->nCell = nCell;
  pPg->nOverflow = 0;

  put2byte(&aData[hdr+1], 0);
  put2byte(&aData[hdr+3], pPg->nCell);
  put2byte(&aData[hdr+5], pData - aData);
  aData[hdr+7] = 0x00;
  return SQLITE_OK;
}

/*
** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
** contains the size in bytes of each such cell. This function attempts to 
** add the cells stored in the array to page pPg. If it cannot (because 
** the page needs to be defragmented before the cells will fit), non-zero
** is returned. Otherwise, if the cells are added successfully, zero is
** returned.
**
** Argument pCellptr points to the first entry in the cell-pointer array
** (part of page pPg) to populate. After cell apCell[0] is written to the
** page body, a 16-bit offset is written to pCellptr. And so on, for each
** cell in the array. It is the responsibility of the caller to ensure
** that it is safe to overwrite this part of the cell-pointer array.
**
** When this function is called, *ppData points to the start of the 
** content area on page pPg. If the size of the content area is extended,
** *ppData is updated to point to the new start of the content area
** before returning.
**
** Finally, argument pBegin points to the byte immediately following the
** end of the space required by this page for the cell-pointer area (for
** all cells - not just those inserted by the current call). If the content
** area must be extended to before this point in order to accomodate all
** cells in apCell[], then the cells do not fit and non-zero is returned.
*/
static int pageInsertArray(
  MemPage *pPg,                   /* Page to add cells to */
  u8 *pBegin,                     /* End of cell-pointer array */
  u8 **ppData,                    /* IN/OUT: Page content -area pointer */
  u8 *pCellptr,                   /* Pointer to cell-pointer area */
  int iFirst,                     /* Index of first cell to add */
  int nCell,                      /* Number of cells to add to pPg */
  CellArray *pCArray              /* Array of cells */
){
  int i;
  u8 *aData = pPg->aData;
  u8 *pData = *ppData;
  int iEnd = iFirst + nCell;
  assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
  for(i=iFirst; i<iEnd; i++){
    int sz, rc;
    u8 *pSlot;
    sz = cachedCellSize(pCArray, i);
    if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
      if( (pData - pBegin)<sz ) return 1;
      pData -= sz;
      pSlot = pData;
    }
    /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
    ** database.  But they might for a corrupt database.  Hence use memmove()
    ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
    assert( (pSlot+sz)<=pCArray->apCell[i]
         || pSlot>=(pCArray->apCell[i]+sz)
         || CORRUPT_DB );
    memmove(pSlot, pCArray->apCell[i], sz);
    put2byte(pCellptr, (pSlot - aData));
    pCellptr += 2;
  }
  *ppData = pData;
  return 0;
}

/*
** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 
** contains the size in bytes of each such cell. This function adds the
** space associated with each cell in the array that is currently stored 
** within the body of pPg to the pPg free-list. The cell-pointers and other
** fields of the page are not updated.
**
** This function returns the total number of cells added to the free-list.
*/
static int pageFreeArray(
  MemPage *pPg,                   /* Page to edit */
  int iFirst,                     /* First cell to delete */
  int nCell,                      /* Cells to delete */
  CellArray *pCArray              /* Array of cells */
){
  u8 * const aData = pPg->aData;
  u8 * const pEnd = &aData[pPg->pBt->usableSize];
  u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
  int nRet = 0;
  int i;
  int iEnd = iFirst + nCell;
  u8 *pFree = 0;
  int szFree = 0;

  for(i=iFirst; i<iEnd; i++){
    u8 *pCell = pCArray->apCell[i];
    if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
      int sz;
      /* No need to use cachedCellSize() here.  The sizes of all cells that
      ** are to be freed have already been computing while deciding which
      ** cells need freeing */
      sz = pCArray->szCell[i];  assert( sz>0 );
      if( pFree!=(pCell + sz) ){
        if( pFree ){
          assert( pFree>aData && (pFree - aData)<65536 );
          freeSpace(pPg, (u16)(pFree - aData), szFree);
        }
        pFree = pCell;
        szFree = sz;
        if( pFree+sz>pEnd ) return 0;
      }else{
        pFree = pCell;
        szFree += sz;
      }
      nRet++;
    }
  }
  if( pFree ){
    assert( pFree>aData && (pFree - aData)<65536 );
    freeSpace(pPg, (u16)(pFree - aData), szFree);
  }
  return nRet;
}

/*
** apCell[] and szCell[] contains pointers to and sizes of all cells in the
** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
** with apCell[iOld].  After balancing, this page should hold nNew cells
** starting at apCell[iNew].
**
** This routine makes the necessary adjustments to pPg so that it contains
** the correct cells after being balanced.
**
** The pPg->nFree field is invalid when this function returns. It is the
** responsibility of the caller to set it correctly.
*/
static int editPage(
  MemPage *pPg,                   /* Edit this page */
  int iOld,                       /* Index of first cell currently on page */
  int iNew,                       /* Index of new first cell on page */
  int nNew,                       /* Final number of cells on page */
  CellArray *pCArray              /* Array of cells and sizes */
){
  u8 * const aData = pPg->aData;
  const int hdr = pPg->hdrOffset;
  u8 *pBegin = &pPg->aCellIdx[nNew * 2];
  int nCell = pPg->nCell;       /* Cells stored on pPg */
  u8 *pData;
  u8 *pCellptr;
  int i;
  int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
  int iNewEnd = iNew + nNew;

#ifdef SQLITE_DEBUG
  u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
  memcpy(pTmp, aData, pPg->pBt->usableSize);
#endif

  /* Remove cells from the start and end of the page */
  if( iOld<iNew ){
    int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
    memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
    nCell -= nShift;
  }
  if( iNewEnd < iOldEnd ){
    nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
  }

  pData = &aData[get2byteNotZero(&aData[hdr+5])];
  if( pData<pBegin ) goto editpage_fail;

  /* Add cells to the start of the page */
  if( iNew<iOld ){
    int nAdd = MIN(nNew,iOld-iNew);
    assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
    pCellptr = pPg->aCellIdx;
    memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
    if( pageInsertArray(
          pPg, pBegin, &pData, pCellptr,
          iNew, nAdd, pCArray
    ) ) goto editpage_fail;
    nCell += nAdd;
  }

  /* Add any overflow cells */
  for(i=0; i<pPg->nOverflow; i++){
    int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
    if( iCell>=0 && iCell<nNew ){
      pCellptr = &pPg->aCellIdx[iCell * 2];
      memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
      nCell++;
      if( pageInsertArray(
            pPg, pBegin, &pData, pCellptr,
            iCell+iNew, 1, pCArray
      ) ) goto editpage_fail;
    }
  }

  /* Append cells to the end of the page */
  pCellptr = &pPg->aCellIdx[nCell*2];
  if( pageInsertArray(
        pPg, pBegin, &pData, pCellptr,
        iNew+nCell, nNew-nCell, pCArray
  ) ) goto editpage_fail;

  pPg->nCell = nNew;
  pPg->nOverflow = 0;

  put2byte(&aData[hdr+3], pPg->nCell);
  put2byte(&aData[hdr+5], pData - aData);

#ifdef SQLITE_DEBUG
  for(i=0; i<nNew && !CORRUPT_DB; i++){
    u8 *pCell = pCArray->apCell[i+iNew];
    int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
    if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
      pCell = &pTmp[pCell - aData];
    }
    assert( 0==memcmp(pCell, &aData[iOff],
            pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
  }
#endif

  return SQLITE_OK;
 editpage_fail:
  /* Unable to edit this page. Rebuild it from scratch instead. */
  populateCellCache(pCArray, iNew, nNew);
  return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
}

/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation.  NN is the number of neighbors on either side
** of the page that participate in the balancing operation.  NB is the
** total number of pages that participate, including the target page and
** NN neighbors on either side.
**
** The minimum value of NN is 1 (of course).  Increasing NN above 1
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
** in exchange for a larger degradation in INSERT and UPDATE performance.
** The value of NN appears to give the best results overall.
*/
#define NN 1             /* Number of neighbors on either side of pPage */
#define NB (NN*2+1)      /* Total pages involved in the balance */


#ifndef SQLITE_OMIT_QUICKBALANCE
/*
** This version of balance() handles the common special case where
** a new entry is being inserted on the extreme right-end of the
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
** Instead of trying to balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page.  This leaves the right side of the tree somewhat
** unbalanced.  But odds are that we will be inserting new entries
** at the end soon afterwards so the nearly empty page will quickly
** fill up.  On average.
**
** pPage is the leaf page which is the right-most page in the tree.
** pParent is its parent.  pPage must have a single overflow entry
** which is also the right-most entry on the page.
**
** The pSpace buffer is used to store a temporary copy of the divider
** cell that will be inserted into pParent. Such a cell consists of a 4
** byte page number followed by a variable length integer. In other
** words, at most 13 bytes. Hence the pSpace buffer must be at
** least 13 bytes in size.
*/
static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
  BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
  MemPage *pNew;                       /* Newly allocated page */
  int rc;                              /* Return Code */
  Pgno pgnoNew;                        /* Page number of pNew */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  assert( pPage->nOverflow==1 );

  /* This error condition is now caught prior to reaching this function */
  if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;

  /* Allocate a new page. This page will become the right-sibling of 
  ** pPage. Make the parent page writable, so that the new divider cell
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

  if( rc==SQLITE_OK ){

    u8 *pOut = &pSpace[4];
    u8 *pCell = pPage->apOvfl[0];
    u16 szCell = pPage->xCellSize(pPage, pCell);
    u8 *pStop;

    assert( sqlite3PagerIswriteable(pNew->pDbPage) );
    assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
    zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
    rc = rebuildPage(pNew, 1, &pCell, &szCell);
    if( NEVER(rc) ) return rc;
    pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;

    /* If this is an auto-vacuum database, update the pointer map
    ** with entries for the new page, and any pointer from the 
    ** cell on the page to an overflow page. If either of these
    ** operations fails, the return code is set, but the contents
    ** of the parent page are still manipulated by thh code below.
    ** That is Ok, at this point the parent page is guaranteed to
    ** be marked as dirty. Returning an error code will cause a
    ** rollback, undoing any changes made to the parent page.
    */
    if( ISAUTOVACUUM ){
      ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
      if( szCell>pNew->minLocal ){
        ptrmapPutOvflPtr(pNew, pCell, &rc);
      }
    }
  
    /* Create a divider cell to insert into pParent. The divider cell
    ** consists of a 4-byte page number (the page number of pPage) and
    ** a variable length key value (which must be the same value as the
    ** largest key on pPage).
    **
    ** To find the largest key value on pPage, first find the right-most 
    ** cell on pPage. The first two fields of this cell are the 
    ** record-length (a variable length integer at most 32-bits in size)
    ** and the key value (a variable length integer, may have any value).
    ** The first of the while(...) loops below skips over the record-length
    ** field. The second while(...) loop copies the key value from the
    ** cell on pPage into the pSpace buffer.
    */
    pCell = findCell(pPage, pPage->nCell-1);
    pStop = &pCell[9];
    while( (*(pCell++)&0x80) && pCell<pStop );
    pStop = &pCell[9];
    while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );

    /* Insert the new divider cell into pParent. */
    if( rc==SQLITE_OK ){
      insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
                   0, pPage->pgno, &rc);
    }

    /* Set the right-child pointer of pParent to point to the new page. */
    put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
  
    /* Release the reference to the new page. */
    releasePage(pNew);
  }

  return rc;
}
#endif /* SQLITE_OMIT_QUICKBALANCE */

#if 0
/*
** This function does not contribute anything to the operation of SQLite.
** it is sometimes activated temporarily while debugging code responsible 
** for setting pointer-map entries.
*/
static int ptrmapCheckPages(MemPage **apPage, int nPage){
  int i, j;
  for(i=0; i<nPage; i++){
    Pgno n;
    u8 e;
    MemPage *pPage = apPage[i];
    BtShared *pBt = pPage->pBt;
    assert( pPage->isInit );

    for(j=0; j<pPage->nCell; j++){
      CellInfo info;
      u8 *z;
     
      z = findCell(pPage, j);
      pPage->xParseCell(pPage, z, &info);
      if( info.nLocal<info.nPayload ){
        Pgno ovfl = get4byte(&z[info.nSize-4]);
        ptrmapGet(pBt, ovfl, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
      }
      if( !pPage->leaf ){
        Pgno child = get4byte(z);
        ptrmapGet(pBt, child, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_BTREE );
      }
    }
    if( !pPage->leaf ){
      Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
      ptrmapGet(pBt, child, &e, &n);
      assert( n==pPage->pgno && e==PTRMAP_BTREE );
    }
  }
  return 1;
}
#endif

/*
** This function is used to copy the contents of the b-tree node stored 
** on page pFrom to page pTo. If page pFrom was not a leaf page, then
** the pointer-map entries for each child page are updated so that the
** parent page stored in the pointer map is page pTo. If pFrom contained
** any cells with overflow page pointers, then the corresponding pointer
** map entries are also updated so that the parent page is page pTo.
**
** If pFrom is currently carrying any overflow cells (entries in the
** MemPage.apOvfl[] array), they are not copied to pTo. 
**
** Before returning, page pTo is reinitialized using btreeInitPage().
**
** The performance of this function is not critical. It is only used by 
** the balance_shallower() and balance_deeper() procedures, neither of
** which are called often under normal circumstances.
*/
static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    BtShared * const pBt = pFrom->pBt;
    u8 * const aFrom = pFrom->aData;
    u8 * const aTo = pTo->aData;
    int const iFromHdr = pFrom->hdrOffset;
    int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
    int rc;
    int iData;
  
  
    assert( pFrom->isInit );
    assert( pFrom->nFree>=iToHdr );
    assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
  
    /* Copy the b-tree node content from page pFrom to page pTo. */
    iData = get2byte(&aFrom[iFromHdr+5]);
    memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
    memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
  
    /* Reinitialize page pTo so that the contents of the MemPage structure
    ** match the new data. The initialization of pTo can actually fail under
    ** fairly obscure circumstances, even though it is a copy of initialized 
    ** page pFrom.
    */
    pTo->isInit = 0;
    rc = btreeInitPage(pTo);
    if( rc!=SQLITE_OK ){
      *pRC = rc;
      return;
    }
  
    /* If this is an auto-vacuum database, update the pointer-map entries
    ** for any b-tree or overflow pages that pTo now contains the pointers to.
    */
    if( ISAUTOVACUUM ){
      *pRC = setChildPtrmaps(pTo);
    }
  }
}

/*
** This routine redistributes cells on the iParentIdx'th child of pParent
** (hereafter "the page") and up to 2 siblings so that all pages have about the
** same amount of free space. Usually a single sibling on either side of the
** page are used in the balancing, though both siblings might come from one
** side if the page is the first or last child of its parent. If the page 
** has fewer than 2 siblings (something which can only happen if the page
** is a root page or a child of a root page) then all available siblings
** participate in the balancing.
**
** The number of siblings of the page might be increased or decreased by 
** one or two in an effort to keep pages nearly full but not over full. 
**
** Note that when this routine is called, some of the cells on the page
** might not actually be stored in MemPage.aData[]. This can happen
** if the page is overfull. This routine ensures that all cells allocated
** to the page and its siblings fit into MemPage.aData[] before returning.
**
** In the course of balancing the page and its siblings, cells may be
** inserted into or removed from the parent page (pParent). Doing so
** may cause the parent page to become overfull or underfull. If this
** happens, it is the responsibility of the caller to invoke the correct
** balancing routine to fix this problem (see the balance() routine). 
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
**
** The third argument to this function, aOvflSpace, is a pointer to a
** buffer big enough to hold one page. If while inserting cells into the parent
** page (pParent) the parent page becomes overfull, this buffer is
** used to store the parent's overflow cells. Because this function inserts
** a maximum of four divider cells into the parent page, and the maximum
** size of a cell stored within an internal node is always less than 1/4
** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
** enough for all overflow cells.
**
** If aOvflSpace is set to a null pointer, this function returns 
** SQLITE_NOMEM.
*/
static int balance_nonroot(
  MemPage *pParent,               /* Parent page of siblings being balanced */
  int iParentIdx,                 /* Index of "the page" in pParent */
  u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
  int isRoot,                     /* True if pParent is a root-page */
  int bBulk                       /* True if this call is part of a bulk load */
){
  BtShared *pBt;               /* The whole database */
  int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
  int nNew = 0;                /* Number of pages in apNew[] */
  int nOld;                    /* Number of pages in apOld[] */
  int i, j, k;                 /* Loop counters */
  int nxDiv;                   /* Next divider slot in pParent->aCell[] */
  int rc = SQLITE_OK;          /* The return code */
  u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
  int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
  int usableSpace;             /* Bytes in pPage beyond the header */
  int pageFlags;               /* Value of pPage->aData[0] */
  int iSpace1 = 0;             /* First unused byte of aSpace1[] */
  int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
  int szScratch;               /* Size of scratch memory requested */
  MemPage *apOld[NB];          /* pPage and up to two siblings */
  MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
  u8 *pRight;                  /* Location in parent of right-sibling pointer */
  u8 *apDiv[NB-1];             /* Divider cells in pParent */
  int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
  int cntOld[NB+2];            /* Old index in b.apCell[] */
  int szNew[NB+2];             /* Combined size of cells placed on i-th page */
  u8 *aSpace1;                 /* Space for copies of dividers cells */
  Pgno pgno;                   /* Temp var to store a page number in */
  u8 abDone[NB+2];             /* True after i'th new page is populated */
  Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
  Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
  u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
  CellArray b;                  /* Parsed information on cells being balanced */

  memset(abDone, 0, sizeof(abDone));
  b.nCell = 0;
  b.apCell = 0;
  pBt = pParent->pBt;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );

#if 0
  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#endif

  /* At this point pParent may have at most one overflow cell. And if
  ** this overflow cell is present, it must be the cell with 
  ** index iParentIdx. This scenario comes about when this function
  ** is called (indirectly) from sqlite3BtreeDelete().
  */
  assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
  assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );

  if( !aOvflSpace ){
    return SQLITE_NOMEM_BKPT;
  }

  /* Find the sibling pages to balance. Also locate the cells in pParent 
  ** that divide the siblings. An attempt is made to find NN siblings on 
  ** either side of pPage. More siblings are taken from one side, however, 
  ** if there are fewer than NN siblings on the other side. If pParent
  ** has NB or fewer children then all children of pParent are taken.  
  **
  ** This loop also drops the divider cells from the parent page. This
  ** way, the remainder of the function does not have to deal with any
  ** overflow cells in the parent page, since if any existed they will
  ** have already been removed.
  */
  i = pParent->nOverflow + pParent->nCell;
  if( i<2 ){
    nxDiv = 0;
  }else{
    assert( bBulk==0 || bBulk==1 );
    if( iParentIdx==0 ){                 
      nxDiv = 0;
    }else if( iParentIdx==i ){
      nxDiv = i-2+bBulk;
    }else{
      nxDiv = iParentIdx-1;
    }
    i = 2-bBulk;
  }
  nOld = i+1;
  if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
    pRight = &pParent->aData[pParent->hdrOffset+8];
  }else{
    pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
  }
  pgno = get4byte(pRight);
  while( 1 ){
    rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
    if( rc ){
      memset(apOld, 0, (i+1)*sizeof(MemPage*));
      goto balance_cleanup;
    }
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
    if( (i--)==0 ) break;

    if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
      apDiv[i] = pParent->apOvfl[0];
      pgno = get4byte(apDiv[i]);
      szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
      pParent->nOverflow = 0;
    }else{
      apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
      pgno = get4byte(apDiv[i]);
      szNew[i] = pParent->xCellSize(pParent, apDiv[i]);

      /* Drop the cell from the parent page. apDiv[i] still points to
      ** the cell within the parent, even though it has been dropped.
      ** This is safe because dropping a cell only overwrites the first
      ** four bytes of it, and this function does not need the first
      ** four bytes of the divider cell. So the pointer is safe to use
      ** later on.  
      **
      ** But not if we are in secure-delete mode. In secure-delete mode,
      ** the dropCell() routine will overwrite the entire cell with zeroes.
      ** In this case, temporarily copy the cell into the aOvflSpace[]
      ** buffer. It will be copied out again as soon as the aSpace[] buffer
      ** is allocated.  */
      if( pBt->btsFlags & BTS_SECURE_DELETE ){
        int iOff;

        iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
        if( (iOff+szNew[i])>(int)pBt->usableSize ){
          rc = SQLITE_CORRUPT_BKPT;
          memset(apOld, 0, (i+1)*sizeof(MemPage*));
          goto balance_cleanup;
        }else{
          memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
          apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
        }
      }
      dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
    }
  }

  /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
  ** alignment */
  nMaxCells = (nMaxCells + 3)&~3;

  /*
  ** Allocate space for memory structures
  */
  szScratch =
       nMaxCells*sizeof(u8*)                       /* b.apCell */
     + nMaxCells*sizeof(u16)                       /* b.szCell */
     + pBt->pageSize;                              /* aSpace1 */

  /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
  ** that is more than 6 times the database page size. */
  assert( szScratch<=6*(int)pBt->pageSize );
  b.apCell = sqlite3ScratchMalloc( szScratch ); 
  if( b.apCell==0 ){
    rc = SQLITE_NOMEM_BKPT;
    goto balance_cleanup;
  }
  b.szCell = (u16*)&b.apCell[nMaxCells];
  aSpace1 = (u8*)&b.szCell[nMaxCells];
  assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local b.apCell[] array.  Make copies of the divider cells
  ** into space obtained from aSpace1[]. The divider cells have already
  ** been removed from pParent.
  **
  ** If the siblings are on leaf pages, then the child pointers of the
  ** divider cells are stripped from the cells before they are copied
  ** into aSpace1[].  In this way, all cells in b.apCell[] are without
  ** child pointers.  If siblings are not leaves, then all cell in
  ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
  ** are alike.
  **
  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  */
  b.pRef = apOld[0];
  leafCorrection = b.pRef->leaf*4;
  leafData = b.pRef->intKeyLeaf;
  for(i=0; i<nOld; i++){
    MemPage *pOld = apOld[i];
    int limit = pOld->nCell;
    u8 *aData = pOld->aData;
    u16 maskPage = pOld->maskPage;
    u8 *piCell = aData + pOld->cellOffset;
    u8 *piEnd;

    /* Verify that all sibling pages are of the same "type" (table-leaf,
    ** table-interior, index-leaf, or index-interior).
    */
    if( pOld->aData[0]!=apOld[0]->aData[0] ){
      rc = SQLITE_CORRUPT_BKPT;
      goto balance_cleanup;
    }

    /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
    ** constains overflow cells, include them in the b.apCell[] array
    ** in the correct spot.
    **
    ** Note that when there are multiple overflow cells, it is always the
    ** case that they are sequential and adjacent.  This invariant arises
    ** because multiple overflows can only occurs when inserting divider
    ** cells into a parent on a prior balance, and divider cells are always
    ** adjacent and are inserted in order.  There is an assert() tagged
    ** with "NOTE 1" in the overflow cell insertion loop to prove this
    ** invariant.
    **
    ** This must be done in advance.  Once the balance starts, the cell
    ** offset section of the btree page will be overwritten and we will no
    ** long be able to find the cells if a pointer to each cell is not saved
    ** first.
    */
    memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
    if( pOld->nOverflow>0 ){
      limit = pOld->aiOvfl[0];
      for(j=0; j<limit; j++){
        b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
        piCell += 2;
        b.nCell++;
      }
      for(k=0; k<pOld->nOverflow; k++){
        assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
        b.apCell[b.nCell] = pOld->apOvfl[k];
        b.nCell++;
      }
    }
    piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
    while( piCell<piEnd ){
      assert( b.nCell<nMaxCells );
      b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
      piCell += 2;
      b.nCell++;
    }

    cntOld[i] = b.nCell;
    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
      u8 *pTemp;
      assert( b.nCell<nMaxCells );
      b.szCell[b.nCell] = sz;
      pTemp = &aSpace1[iSpace1];
      iSpace1 += sz;
      assert( sz<=pBt->maxLocal+23 );
      assert( iSpace1 <= (int)pBt->pageSize );
      memcpy(pTemp, apDiv[i], sz);
      b.apCell[b.nCell] = pTemp+leafCorrection;
      assert( leafCorrection==0 || leafCorrection==4 );
      b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
      if( !pOld->leaf ){
        assert( leafCorrection==0 );
        assert( pOld->hdrOffset==0 );
        /* The right pointer of the child page pOld becomes the left
        ** pointer of the divider cell */
        memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
      }else{
        assert( leafCorrection==4 );
        while( b.szCell[b.nCell]<4 ){
          /* Do not allow any cells smaller than 4 bytes. If a smaller cell
          ** does exist, pad it with 0x00 bytes. */
          assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
          assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
          aSpace1[iSpace1++] = 0x00;
          b.szCell[b.nCell]++;
        }
      }
      b.nCell++;
    }
  }

  /*
  ** Figure out the number of pages needed to hold all b.nCell cells.
  ** Store this number in "k".  Also compute szNew[] which is the total
  ** size of all cells on the i-th page and cntNew[] which is the index
  ** in b.apCell[] of the cell that divides page i from page i+1.  
  ** cntNew[k] should equal b.nCell.
  **
  ** Values computed by this block:
  **
  **           k: The total number of sibling pages
  **    szNew[i]: Spaced used on the i-th sibling page.
  **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
  **              the right of the i-th sibling page.
  ** usableSpace: Number of bytes of space available on each sibling.
  ** 
  */
  usableSpace = pBt->usableSize - 12 + leafCorrection;
  for(i=0; i<nOld; i++){
    MemPage *p = apOld[i];
    szNew[i] = usableSpace - p->nFree;
    if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
    for(j=0; j<p->nOverflow; j++){
      szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
    }
    cntNew[i] = cntOld[i];
  }
  k = nOld;
  for(i=0; i<k; i++){
    int sz;
    while( szNew[i]>usableSpace ){
      if( i+1>=k ){
        k = i+2;
        if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
        szNew[k-1] = 0;
        cntNew[k-1] = b.nCell;
      }
      sz = 2 + cachedCellSize(&b, cntNew[i]-1);
      szNew[i] -= sz;
      if( !leafData ){
        if( cntNew[i]<b.nCell ){
          sz = 2 + cachedCellSize(&b, cntNew[i]);
        }else{
          sz = 0;
        }
      }
      szNew[i+1] += sz;
      cntNew[i]--;
    }
    while( cntNew[i]<b.nCell ){
      sz = 2 + cachedCellSize(&b, cntNew[i]);
      if( szNew[i]+sz>usableSpace ) break;
      szNew[i] += sz;
      cntNew[i]++;
      if( !leafData ){
        if( cntNew[i]<b.nCell ){
          sz = 2 + cachedCellSize(&b, cntNew[i]);
        }else{
          sz = 0;
        }
      }
      szNew[i+1] -= sz;
    }
    if( cntNew[i]>=b.nCell ){
      k = i+1;
    }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto balance_cleanup;
    }
  }

  /*
  ** The packing computed by the previous block is biased toward the siblings
  ** on the left side (siblings with smaller keys). The left siblings are
  ** always nearly full, while the right-most sibling might be nearly empty.
  ** The next block of code attempts to adjust the packing of siblings to
  ** get a better balance.
  **
  ** This adjustment is more than an optimization.  The packing above might
  ** be so out of balance as to be illegal.  For example, the right-most
  ** sibling might be completely empty.  This adjustment is not optional.
  */
  for(i=k-1; i>0; i--){
    int szRight = szNew[i];  /* Size of sibling on the right */
    int szLeft = szNew[i-1]; /* Size of sibling on the left */
    int r;              /* Index of right-most cell in left sibling */
    int d;              /* Index of first cell to the left of right sibling */

    r = cntNew[i-1] - 1;
    d = r + 1 - leafData;
    (void)cachedCellSize(&b, d);
    do{
      assert( d<nMaxCells );
      assert( r<nMaxCells );
      (void)cachedCellSize(&b, r);
      if( szRight!=0
       && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
        break;
      }
      szRight += b.szCell[d] + 2;
      szLeft -= b.szCell[r] + 2;
      cntNew[i-1] = r;
      r--;
      d--;
    }while( r>=0 );
    szNew[i] = szRight;
    szNew[i-1] = szLeft;
    if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto balance_cleanup;
    }
  }

  /* Sanity check:  For a non-corrupt database file one of the follwing
  ** must be true:
  **    (1) We found one or more cells (cntNew[0])>0), or
  **    (2) pPage is a virtual root page.  A virtual root page is when
  **        the real root page is page 1 and we are the only child of
  **        that page.
  */
  assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
  TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
    apOld[0]->pgno, apOld[0]->nCell,
    nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
    nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
  ));

  /*
  ** Allocate k new pages.  Reuse old pages where possible.
  */
  pageFlags = apOld[0]->aData[0];
  for(i=0; i<k; i++){
    MemPage *pNew;
    if( i<nOld ){
      pNew = apNew[i] = apOld[i];
      apOld[i] = 0;
      rc = sqlite3PagerWrite(pNew->pDbPage);
      nNew++;
      if( rc ) goto balance_cleanup;
    }else{
      assert( i>0 );
      rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
      if( rc ) goto balance_cleanup;
      zeroPage(pNew, pageFlags);
      apNew[i] = pNew;
      nNew++;
      cntOld[i] = b.nCell;

      /* Set the pointer-map entry for the new sibling page. */
      if( ISAUTOVACUUM ){
        ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
        if( rc!=SQLITE_OK ){
          goto balance_cleanup;
        }
      }
    }
  }

  /*
  ** Reassign page numbers so that the new pages are in ascending order. 
  ** This helps to keep entries in the disk file in order so that a scan
  ** of the table is closer to a linear scan through the file. That in turn 
  ** helps the operating system to deliver pages from the disk more rapidly.
  **
  ** An O(n^2) insertion sort algorithm is used, but since n is never more 
  ** than (NB+2) (a small constant), that should not be a problem.
  **
  ** When NB==3, this one optimization makes the database about 25% faster 
  ** for large insertions and deletions.
  */
  for(i=0; i<nNew; i++){
    aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
    aPgFlags[i] = apNew[i]->pDbPage->flags;
    for(j=0; j<i; j++){
      if( aPgno[j]==aPgno[i] ){
        /* This branch is taken if the set of sibling pages somehow contains
        ** duplicate entries. This can happen if the database is corrupt. 
        ** It would be simpler to detect this as part of the loop below, but
        ** we do the detection here in order to avoid populating the pager
        ** cache with two separate objects associated with the same
        ** page number.  */
        assert( CORRUPT_DB );
        rc = SQLITE_CORRUPT_BKPT;
        goto balance_cleanup;
      }
    }
  }
  for(i=0; i<nNew; i++){
    int iBest = 0;                /* aPgno[] index of page number to use */
    for(j=1; j<nNew; j++){
      if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
    }
    pgno = aPgOrder[iBest];
    aPgOrder[iBest] = 0xffffffff;
    if( iBest!=i ){
      if( iBest>i ){
        sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
      }
      sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
      apNew[i]->pgno = pgno;
    }
  }

  TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
         "%d(%d nc=%d) %d(%d nc=%d)\n",
    apNew[0]->pgno, szNew[0], cntNew[0],
    nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
    nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
    nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
    nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
    nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
    nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
    nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
    nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
  ));

  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  put4byte(pRight, apNew[nNew-1]->pgno);

  /* If the sibling pages are not leaves, ensure that the right-child pointer
  ** of the right-most new sibling page is set to the value that was 
  ** originally in the same field of the right-most old sibling page. */
  if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
    MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
    memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
  }

  /* Make any required updates to pointer map entries associated with 
  ** cells stored on sibling pages following the balance operation. Pointer
  ** map entries associated with divider cells are set by the insertCell()
  ** routine. The associated pointer map entries are:
  **
  **   a) if the cell contains a reference to an overflow chain, the
  **      entry associated with the first page in the overflow chain, and
  **
  **   b) if the sibling pages are not leaves, the child page associated
  **      with the cell.
  **
  ** If the sibling pages are not leaves, then the pointer map entry 
  ** associated with the right-child of each sibling may also need to be 
  ** updated. This happens below, after the sibling pages have been 
  ** populated, not here.
  */
  if( ISAUTOVACUUM ){
    MemPage *pNew = apNew[0];
    u8 *aOld = pNew->aData;
    int cntOldNext = pNew->nCell + pNew->nOverflow;
    int usableSize = pBt->usableSize;
    int iNew = 0;
    int iOld = 0;

    for(i=0; i<b.nCell; i++){
      u8 *pCell = b.apCell[i];
      if( i==cntOldNext ){
        MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
        cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
        aOld = pOld->aData;
      }
      if( i==cntNew[iNew] ){
        pNew = apNew[++iNew];
        if( !leafData ) continue;
      }

      /* Cell pCell is destined for new sibling page pNew. Originally, it
      ** was either part of sibling page iOld (possibly an overflow cell), 
      ** or else the divider cell to the left of sibling page iOld. So,
      ** if sibling page iOld had the same page number as pNew, and if
      ** pCell really was a part of sibling page iOld (not a divider or
      ** overflow cell), we can skip updating the pointer map entries.  */
      if( iOld>=nNew
       || pNew->pgno!=aPgno[iOld]
       || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
      ){
        if( !leafCorrection ){
          ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
        }
        if( cachedCellSize(&b,i)>pNew->minLocal ){
          ptrmapPutOvflPtr(pNew, pCell, &rc);
        }
        if( rc ) goto balance_cleanup;
      }
    }
  }

  /* Insert new divider cells into pParent. */
  for(i=0; i<nNew-1; i++){
    u8 *pCell;
    u8 *pTemp;
    int sz;
    MemPage *pNew = apNew[i];
    j = cntNew[i];

    assert( j<nMaxCells );
    assert( b.apCell[j]!=0 );
    pCell = b.apCell[j];
    sz = b.szCell[j] + leafCorrection;
    pTemp = &aOvflSpace[iOvflSpace];
    if( !pNew->leaf ){
      memcpy(&pNew->aData[8], pCell, 4);
    }else if( leafData ){
      /* If the tree is a leaf-data tree, and the siblings are leaves, 
      ** then there is no divider cell in b.apCell[]. Instead, the divider 
      ** cell consists of the integer key for the right-most cell of 
      ** the sibling-page assembled above only.
      */
      CellInfo info;
      j--;
      pNew->xParseCell(pNew, b.apCell[j], &info);
      pCell = pTemp;
      sz = 4 + putVarint(&pCell[4], info.nKey);
      pTemp = 0;
    }else{
      pCell -= 4;
      /* Obscure case for non-leaf-data trees: If the cell at pCell was
      ** previously stored on a leaf node, and its reported size was 4
      ** bytes, then it may actually be smaller than this 
      ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
      ** any cell). But it is important to pass the correct size to 
      ** insertCell(), so reparse the cell now.
      **
      ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
      ** and WITHOUT ROWID tables with exactly one column which is the
      ** primary key.
      */
      if( b.szCell[j]==4 ){
        assert(leafCorrection==4);
        sz = pParent->xCellSize(pParent, pCell);
      }
    }
    iOvflSpace += sz;
    assert( sz<=pBt->maxLocal+23 );
    assert( iOvflSpace <= (int)pBt->pageSize );
    insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
    if( rc!=SQLITE_OK ) goto balance_cleanup;
    assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  }

  /* Now update the actual sibling pages. The order in which they are updated
  ** is important, as this code needs to avoid disrupting any page from which
  ** cells may still to be read. In practice, this means:
  **
  **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
  **      then it is not safe to update page apNew[iPg] until after
  **      the left-hand sibling apNew[iPg-1] has been updated.
  **
  **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
  **      then it is not safe to update page apNew[iPg] until after
  **      the right-hand sibling apNew[iPg+1] has been updated.
  **
  ** If neither of the above apply, the page is safe to update.
  **
  ** The iPg value in the following loop starts at nNew-1 goes down
  ** to 0, then back up to nNew-1 again, thus making two passes over
  ** the pages.  On the initial downward pass, only condition (1) above
  ** needs to be tested because (2) will always be true from the previous
  ** step.  On the upward pass, both conditions are always true, so the
  ** upwards pass simply processes pages that were missed on the downward
  ** pass.
  */
  for(i=1-nNew; i<nNew; i++){
    int iPg = i<0 ? -i : i;
    assert( iPg>=0 && iPg<nNew );
    if( abDone[iPg] ) continue;         /* Skip pages already processed */
    if( i>=0                            /* On the upwards pass, or... */
     || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
    ){
      int iNew;
      int iOld;
      int nNewCell;

      /* Verify condition (1):  If cells are moving left, update iPg
      ** only after iPg-1 has already been updated. */
      assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );

      /* Verify condition (2):  If cells are moving right, update iPg
      ** only after iPg+1 has already been updated. */
      assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );

      if( iPg==0 ){
        iNew = iOld = 0;
        nNewCell = cntNew[0];
      }else{
        iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
        iNew = cntNew[iPg-1] + !leafData;
        nNewCell = cntNew[iPg] - iNew;
      }

      rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
      if( rc ) goto balance_cleanup;
      abDone[iPg]++;
      apNew[iPg]->nFree = usableSpace-szNew[iPg];
      assert( apNew[iPg]->nOverflow==0 );
      assert( apNew[iPg]->nCell==nNewCell );
    }
  }

  /* All pages have been processed exactly once */
  assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );

  assert( nOld>0 );
  assert( nNew>0 );

  if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
    /* The root page of the b-tree now contains no cells. The only sibling
    ** page is the right-child of the parent. Copy the contents of the
    ** child page into the parent, decreasing the overall height of the
    ** b-tree structure by one. This is described as the "balance-shallower"
    ** sub-algorithm in some documentation.
    **
    ** If this is an auto-vacuum database, the call to copyNodeContent() 
    ** sets all pointer-map entries corresponding to database image pages 
    ** for which the pointer is stored within the content being copied.
    **
    ** It is critical that the child page be defragmented before being
    ** copied into the parent, because if the parent is page 1 then it will
    ** by smaller than the child due to the database header, and so all the
    ** free space needs to be up front.
    */
    assert( nNew==1 || CORRUPT_DB );
    rc = defragmentPage(apNew[0]);
    testcase( rc!=SQLITE_OK );
    assert( apNew[0]->nFree == 
        (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
      || rc!=SQLITE_OK
    );
    copyNodeContent(apNew[0], pParent, &rc);
    freePage(apNew[0], &rc);
  }else if( ISAUTOVACUUM && !leafCorrection ){
    /* Fix the pointer map entries associated with the right-child of each
    ** sibling page. All other pointer map entries have already been taken
    ** care of.  */
    for(i=0; i<nNew; i++){
      u32 key = get4byte(&apNew[i]->aData[8]);
      ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
    }
  }

  assert( pParent->isInit );
  TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
          nOld, nNew, b.nCell));

  /* Free any old pages that were not reused as new pages.
  */
  for(i=nNew; i<nOld; i++){
    freePage(apOld[i], &rc);
  }

#if 0
  if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
    /* The ptrmapCheckPages() contains assert() statements that verify that
    ** all pointer map pages are set correctly. This is helpful while 
    ** debugging. This is usually disabled because a corrupt database may
    ** cause an assert() statement to fail.  */
    ptrmapCheckPages(apNew, nNew);
    ptrmapCheckPages(&pParent, 1);
  }
#endif

  /*
  ** Cleanup before returning.
  */
balance_cleanup:
  sqlite3ScratchFree(b.apCell);
  for(i=0; i<nOld; i++){
    releasePage(apOld[i]);
  }
  for(i=0; i<nNew; i++){
    releasePage(apNew[i]);
  }

  return rc;
}


/*
** This function is called when the root page of a b-tree structure is
** overfull (has one or more overflow pages).
**
** A new child page is allocated and the contents of the current root
** page, including overflow cells, are copied into the child. The root
** page is then overwritten to make it an empty page with the right-child 
** pointer pointing to the new page.
**
** Before returning, all pointer-map entries corresponding to pages 
** that the new child-page now contains pointers to are updated. The
** entry corresponding to the new right-child pointer of the root
** page is also updated.
**
** If successful, *ppChild is set to contain a reference to the child 
** page and SQLITE_OK is returned. In this case the caller is required
** to call releasePage() on *ppChild exactly once. If an error occurs,
** an error code is returned and *ppChild is set to 0.
*/
static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
  int rc;                        /* Return value from subprocedures */
  MemPage *pChild = 0;           /* Pointer to a new child page */
  Pgno pgnoChild = 0;            /* Page number of the new child page */
  BtShared *pBt = pRoot->pBt;    /* The BTree */

  assert( pRoot->nOverflow>0 );
  assert( sqlite3_mutex_held(pBt->mutex) );

  /* Make pRoot, the root page of the b-tree, writable. Allocate a new 
  ** page that will become the new right-child of pPage. Copy the contents
  ** of the node stored on pRoot into the new child page.
  */
  rc = sqlite3PagerWrite(pRoot->pDbPage);
  if( rc==SQLITE_OK ){
    rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
    copyNodeContent(pRoot, pChild, &rc);
    if( ISAUTOVACUUM ){
      ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
    }
  }
  if( rc ){
    *ppChild = 0;
    releasePage(pChild);
    return rc;
  }
  assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  assert( pChild->nCell==pRoot->nCell );

  TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));

  /* Copy the overflow cells from pRoot to pChild */
  memcpy(pChild->aiOvfl, pRoot->aiOvfl,
         pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
  memcpy(pChild->apOvfl, pRoot->apOvfl,
         pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
  pChild->nOverflow = pRoot->nOverflow;

  /* Zero the contents of pRoot. Then install pChild as the right-child. */
  zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
  put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);

  *ppChild = pChild;
  return SQLITE_OK;
}

/*
** The page that pCur currently points to has just been modified in
** some way. This function figures out if this modification means the
** tree needs to be balanced, and if so calls the appropriate balancing 
** routine. Balancing routines are:
**
**   balance_quick()
**   balance_deeper()
**   balance_nonroot()
*/
static int balance(BtCursor *pCur){
  int rc = SQLITE_OK;
  const int nMin = pCur->pBt->usableSize * 2 / 3;
  u8 aBalanceQuickSpace[13];
  u8 *pFree = 0;

  VVA_ONLY( int balance_quick_called = 0 );
  VVA_ONLY( int balance_deeper_called = 0 );

  do {
    int iPage = pCur->iPage;
    MemPage *pPage = pCur->apPage[iPage];

    if( iPage==0 ){
      if( pPage->nOverflow ){
        /* The root page of the b-tree is overfull. In this case call the
        ** balance_deeper() function to create a new child for the root-page
        ** and copy the current contents of the root-page to it. The
        ** next iteration of the do-loop will balance the child page.
        */ 
        assert( balance_deeper_called==0 );
        VVA_ONLY( balance_deeper_called++ );
        rc = balance_deeper(pPage, &pCur->apPage[1]);
        if( rc==SQLITE_OK ){
          pCur->iPage = 1;
          pCur->aiIdx[0] = 0;
          pCur->aiIdx[1] = 0;
          assert( pCur->apPage[1]->nOverflow );
        }
      }else{
        break;
      }
    }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
      break;
    }else{
      MemPage * const pParent = pCur->apPage[iPage-1];
      int const iIdx = pCur->aiIdx[iPage-1];

      rc = sqlite3PagerWrite(pParent->pDbPage);
      if( rc==SQLITE_OK ){
#ifndef SQLITE_OMIT_QUICKBALANCE
        if( pPage->intKeyLeaf
         && pPage->nOverflow==1
         && pPage->aiOvfl[0]==pPage->nCell
         && pParent->pgno!=1
         && pParent->nCell==iIdx
        ){
          /* Call balance_quick() to create a new sibling of pPage on which
          ** to store the overflow cell. balance_quick() inserts a new cell
          ** into pParent, which may cause pParent overflow. If this
          ** happens, the next iteration of the do-loop will balance pParent 
          ** use either balance_nonroot() or balance_deeper(). Until this
          ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
          ** buffer. 
          **
          ** The purpose of the following assert() is to check that only a
          ** single call to balance_quick() is made for each call to this
          ** function. If this were not verified, a subtle bug involving reuse
          ** of the aBalanceQuickSpace[] might sneak in.
          */
          assert( balance_quick_called==0 ); 
          VVA_ONLY( balance_quick_called++ );
          rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
        }else
#endif
        {
          /* In this case, call balance_nonroot() to redistribute cells
          ** between pPage and up to 2 of its sibling pages. This involves
          ** modifying the contents of pParent, which may cause pParent to
          ** become overfull or underfull. The next iteration of the do-loop
          ** will balance the parent page to correct this.
          ** 
          ** If the parent page becomes overfull, the overflow cell or cells
          ** are stored in the pSpace buffer allocated immediately below. 
          ** A subsequent iteration of the do-loop will deal with this by
          ** calling balance_nonroot() (balance_deeper() may be called first,
          ** but it doesn't deal with overflow cells - just moves them to a
          ** different page). Once this subsequent call to balance_nonroot() 
          ** has completed, it is safe to release the pSpace buffer used by
          ** the previous call, as the overflow cell data will have been 
          ** copied either into the body of a database page or into the new
          ** pSpace buffer passed to the latter call to balance_nonroot().
          */
          u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
          rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
                               pCur->hints&BTREE_BULKLOAD);
          if( pFree ){
            /* If pFree is not NULL, it points to the pSpace buffer used 
            ** by a previous call to balance_nonroot(). Its contents are
            ** now stored either on real database pages or within the 
            ** new pSpace buffer, so it may be safely freed here. */
            sqlite3PageFree(pFree);
          }

          /* The pSpace buffer will be freed after the next call to
          ** balance_nonroot(), or just before this function returns, whichever
          ** comes first. */
          pFree = pSpace;
        }
      }

      pPage->nOverflow = 0;

      /* The next iteration of the do-loop balances the parent page. */
      releasePage(pPage);
      pCur->iPage--;
      assert( pCur->iPage>=0 );
    }
  }while( rc==SQLITE_OK );

  if( pFree ){
    sqlite3PageFree(pFree);
  }
  return rc;
}


/*
** Insert a new record into the BTree.  The content of the new record
** is described by the pX object.  The pCur cursor is used only to
** define what table the record should be inserted into, and is left
** pointing at a random location.
**
** For a table btree (used for rowid tables), only the pX.nKey value of
** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
** hold the content of the row.
**
** For an index btree (used for indexes and WITHOUT ROWID tables), the
** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The 
** pX.pData,nData,nZero fields must be zero.
**
** If the seekResult parameter is non-zero, then a successful call to
** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
** been performed. seekResult is the search result returned (a negative
** number if pCur points at an entry that is smaller than (pKey, nKey), or
** a positive value if pCur points at an entry that is larger than 
** (pKey, nKey)). 
**
** If the seekResult parameter is non-zero, then the caller guarantees that
** cursor pCur is pointing at the existing copy of a row that is to be
** overwritten.  If the seekResult parameter is 0, then cursor pCur may
** point to any entry or to no entry at all and so this function has to seek
** the cursor before the new key can be inserted.
*/
int sqlite3BtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const BtreePayload *pX,        /* Content of the row to be inserted */
  int appendBias,                /* True if this is likely an append */
  int seekResult                 /* Result of prior MovetoUnpacked() call */
){
  int rc;
  int loc = seekResult;          /* -1: before desired location  +1: after */
  int szNew = 0;
  int idx;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorOwnsBtShared(pCur) );
  assert( (pCur->curFlags & BTCF_WriteFlag)!=0
              && pBt->inTransaction==TRANS_WRITE
              && (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );

  /* Assert that the caller has been consistent. If this cursor was opened
  ** expecting an index b-tree, then the caller should be inserting blob
  ** keys with no associated data. If the cursor was opened expecting an
  ** intkey table, the caller should be inserting integer keys with a
  ** blob of associated data.  */
  assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );

  /* Save the positions of any other cursors open on this table.
  **
  ** In some cases, the call to btreeMoveto() below is a no-op. For
  ** example, when inserting data into a table with auto-generated integer
  ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 
  ** integer key to use. It then calls this function to actually insert the 
  ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
  ** that the cursor is already where it needs to be and returns without
  ** doing any work. To avoid thwarting these optimizations, it is important
  ** not to clear the cursor here.
  */
  if( pCur->curFlags & BTCF_Multiple ){
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  if( pCur->pKeyInfo==0 ){
    assert( pX->pKey==0 );
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, pX->nKey, 0);

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
      && pCur->info.nKey==pX->nKey-1 ){
       loc = -1;
    }else if( loc==0 ){
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, appendBias, &loc);
      if( rc ) return rc;
    }
  }else if( loc==0 ){
    rc = btreeMoveto(pCur, pX->pKey, pX->nKey, appendBias, &loc);
    if( rc ) return rc;
  }
  assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->intKey || pX->nKey>=0 );
  assert( pPage->leaf || !pPage->intKey );

  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
          pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
          loc==0 ? "overwrite" : "new entry"));
  assert( pPage->isInit );
  newCell = pBt->pTmpSpace;
  assert( newCell!=0 );
  rc = fillInCell(pPage, newCell, pX, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==pPage->xCellSize(pPage, newCell) );
  assert( szNew <= MX_CELL_SIZE(pBt) );
  idx = pCur->aiIdx[pCur->iPage];
  if( loc==0 ){
    u16 szOld;
    assert( idx<pPage->nCell );
    rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc ){
      goto end_insert;
    }
    oldCell = findCell(pPage, idx);
    if( !pPage->leaf ){
      memcpy(newCell, oldCell, 4);
    }
    rc = clearCell(pPage, oldCell, &szOld);
    dropCell(pPage, idx, szOld, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    idx = ++pCur->aiIdx[pCur->iPage];
  }else{
    assert( pPage->leaf );
  }
  insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
  assert( pPage->nOverflow==0 || rc==SQLITE_OK );
  assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );

  /* If no error has occurred and pPage has an overflow cell, call balance() 
  ** to redistribute the cells within the tree. Since balance() may move
  ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
  ** variables.
  **
  ** Previous versions of SQLite called moveToRoot() to move the cursor
  ** back to the root page as balance() used to invalidate the contents
  ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
  ** set the cursor state to "invalid". This makes common insert operations
  ** slightly faster.
  **
  ** There is a subtle but important optimization here too. When inserting
  ** multiple records into an intkey b-tree using a single cursor (as can
  ** happen while processing an "INSERT INTO ... SELECT" statement), it
  ** is advantageous to leave the cursor pointing to the last entry in
  ** the b-tree if possible. If the cursor is left pointing to the last
  ** entry in the table, and the next row inserted has an integer key
  ** larger than the largest existing key, it is possible to insert the
  ** row without seeking the cursor. This can be a big performance boost.
  */
  pCur->info.nSize = 0;
  if( pPage->nOverflow ){
    assert( rc==SQLITE_OK );
    pCur->curFlags &= ~(BTCF_ValidNKey);
    rc = balance(pCur);

    /* Must make sure nOverflow is reset to zero even if the balance()
    ** fails. Internal data structure corruption will result otherwise. 
    ** Also, set the cursor state to invalid. This stops saveCursorPosition()
    ** from trying to save the current position of the cursor.  */
    pCur->apPage[pCur->iPage]->nOverflow = 0;
    pCur->eState = CURSOR_INVALID;
  }
  assert( pCur->apPage[pCur->iPage]->nOverflow==0 );

end_insert:
  return rc;
}

/*
** Delete the entry that the cursor is pointing to. 
**
** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
** the cursor is left pointing at an arbitrary location after the delete.
** But if that bit is set, then the cursor is left in a state such that
** the next call to BtreeNext() or BtreePrev() moves it to the same row
** as it would have been on if the call to BtreeDelete() had been omitted.
**
** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
** associated with a single table entry and its indexes.  Only one of those
** deletes is considered the "primary" delete.  The primary delete occurs
** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
** but which might be used by alternative storage engines.
*/
int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 
  u16 szCell;                          /* Size of the cell being deleted */
  int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
  u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */

  assert( cursorOwnsBtShared(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->eState==CURSOR_VALID );
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->aiIdx[iCellDepth];
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);

  /* If the bPreserve flag is set to true, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 
  ** returning. 
  **
  ** Or, if the current delete will not cause a rebalance, then the cursor
  ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
  ** before or after the deleted entry. In this case set bSkipnext to true.  */
  if( bPreserve ){
    if( !pPage->leaf 
     || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
    ){
      /* A b-tree rebalance will be required after deleting this entry.
      ** Save the cursor key.  */
      rc = saveCursorKey(pCur);
      if( rc ) return rc;
    }else{
      bSkipnext = 1;
    }
  }

  /* If the page containing the entry to delete is not a leaf page, move
  ** the cursor to the largest entry in the tree that is smaller than
  ** the entry being deleted. This cell will replace the cell being deleted
  ** from the internal node. The 'previous' entry is used for this instead
  ** of the 'next' entry, as the previous entry is always a part of the
  ** sub-tree headed by the child page of the cell being deleted. This makes
  ** balancing the tree following the delete operation easier.  */
  if( !pPage->leaf ){
    int notUsed = 0;
    rc = sqlite3BtreePrevious(pCur, &notUsed);
    if( rc ) return rc;
  }

  /* Save the positions of any other cursors open on this table before
  ** making any modifications.  */
  if( pCur->curFlags & BTCF_Multiple ){
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }

  /* Make the page containing the entry to be deleted writable. Then free any
  ** overflow pages associated with the entry and finally remove the cell
  ** itself from within the page.  */
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  rc = clearCell(pPage, pCell, &szCell);
  dropCell(pPage, iCellIdx, szCell, &rc);
  if( rc ) return rc;

  /* If the cell deleted was not located on a leaf page, then the cursor
  ** is currently pointing to the largest entry in the sub-tree headed
  ** by the child-page of the cell that was just deleted from an internal
  ** node. The cell from the leaf node needs to be moved to the internal
  ** node to replace the deleted cell.  */
  if( !pPage->leaf ){
    MemPage *pLeaf = pCur->apPage[pCur->iPage];
    int nCell;
    Pgno n = pCur->apPage[iCellDepth+1]->pgno;
    unsigned char *pTmp;

    pCell = findCell(pLeaf, pLeaf->nCell-1);
    if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
    nCell = pLeaf->xCellSize(pLeaf, pCell);
    assert( MX_CELL_SIZE(pBt) >= nCell );
    pTmp = pBt->pTmpSpace;
    assert( pTmp!=0 );
    rc = sqlite3PagerWrite(pLeaf->pDbPage);
    if( rc==SQLITE_OK ){
      insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
    }
    dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
    if( rc ) return rc;
  }

  /* Balance the tree. If the entry deleted was located on a leaf page,
  ** then the cursor still points to that page. In this case the first
  ** call to balance() repairs the tree, and the if(...) condition is
  ** never true.
  **
  ** Otherwise, if the entry deleted was on an internal node page, then
  ** pCur is pointing to the leaf page from which a cell was removed to
  ** replace the cell deleted from the internal node. This is slightly
  ** tricky as the leaf node may be underfull, and the internal node may
  ** be either under or overfull. In this case run the balancing algorithm
  ** on the leaf node first. If the balance proceeds far enough up the
  ** tree that we can be sure that any problem in the internal node has
  ** been corrected, so be it. Otherwise, after balancing the leaf node,
  ** walk the cursor up the tree to the internal node and balance it as 
  ** well.  */
  rc = balance(pCur);
  if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
    while( pCur->iPage>iCellDepth ){
      releasePage(pCur->apPage[pCur->iPage--]);
    }
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    if( bSkipnext ){
      assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
      assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->aiIdx[iCellDepth] = pPage->nCell-1;
      }else{
        pCur->skipNext = 1;
      }
    }else{
      rc = moveToRoot(pCur);
      if( bPreserve ){
        pCur->eState = CURSOR_REQUIRESEEK;
      }
    }
  }
  return rc;
}

/*
** Create a new BTree table.  Write into *piTable the page
** number for the root page of the new table.
**
** The type of type is determined by the flags parameter.  Only the
** following values of flags are currently in use.  Other values for
** flags might not work:
**
**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
**     BTREE_ZERODATA                  Used for SQL indices
*/
static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
  BtShared *pBt = p->pBt;
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;
  int ptfFlags;          /* Page-type flage for the root page of new table */

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );

#ifdef SQLITE_OMIT_AUTOVACUUM
  rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  if( rc ){
    return rc;
  }
#else
  if( pBt->autoVacuum ){
    Pgno pgnoMove;      /* Move a page here to make room for the root-page */
    MemPage *pPageMove; /* The page to move to. */

    /* Creating a new table may probably require moving an existing database
    ** to make room for the new tables root page. In case this page turns
    ** out to be an overflow page, delete all overflow page-map caches
    ** held by open cursors.
    */
    invalidateAllOverflowCache(pBt);

    /* Read the value of meta[3] from the database to determine where the
    ** root page of the new table should go. meta[3] is the largest root-page
    ** created so far, so the new root-page is (meta[3]+1).
    */
    sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
    pgnoRoot++;

    /* The new root-page may not be allocated on a pointer-map page, or the
    ** PENDING_BYTE page.
    */
    while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
        pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
      pgnoRoot++;
    }
    assert( pgnoRoot>=3 || CORRUPT_DB );
    testcase( pgnoRoot<3 );

    /* Allocate a page. The page that currently resides at pgnoRoot will
    ** be moved to the allocated page (unless the allocated page happens
    ** to reside at pgnoRoot).
    */
    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    if( pgnoMove!=pgnoRoot ){
      /* pgnoRoot is the page that will be used for the root-page of
      ** the new table (assuming an error did not occur). But we were
      ** allocated pgnoMove. If required (i.e. if it was not allocated
      ** by extending the file), the current page at position pgnoMove
      ** is already journaled.
      */
      u8 eType = 0;
      Pgno iPtrPage = 0;

      /* Save the positions of any open cursors. This is required in
      ** case they are holding a reference to an xFetch reference
      ** corresponding to page pgnoRoot.  */
      rc = saveAllCursors(pBt, 0, 0);
      releasePage(pPageMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        rc = SQLITE_CORRUPT_BKPT;
      }
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
      assert( eType!=PTRMAP_ROOTPAGE );
      assert( eType!=PTRMAP_FREEPAGE );
      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
      releasePage(pRoot);

      /* Obtain the page at pgnoRoot */
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = sqlite3PagerWrite(pRoot->pDbPage);
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
    }else{
      pRoot = pPageMove;
    } 

    /* Update the pointer-map and meta-data with the new root-page number. */
    ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
    if( rc ){
      releasePage(pRoot);
      return rc;
    }

    /* When the new root page was allocated, page 1 was made writable in
    ** order either to increase the database filesize, or to decrement the
    ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
    */
    assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
    rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
    if( NEVER(rc) ){
      releasePage(pRoot);
      return rc;
    }

  }else{
    rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
    if( rc ) return rc;
  }
#endif
  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  if( createTabFlags & BTREE_INTKEY ){
    ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
  }else{
    ptfFlags = PTF_ZERODATA | PTF_LEAF;
  }
  zeroPage(pRoot, ptfFlags);
  sqlite3PagerUnref(pRoot->pDbPage);
  assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
  *piTable = (int)pgnoRoot;
  return SQLITE_OK;
}
int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeCreateTable(p, piTable, flags);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Erase the given database page and all its children.  Return
** the page to the freelist.
*/
static int clearDatabasePage(
  BtShared *pBt,           /* The BTree that contains the table */
  Pgno pgno,               /* Page number to clear */
  int freePageFlag,        /* Deallocate page if true */
  int *pnChange            /* Add number of Cells freed to this counter */
){
  MemPage *pPage;
  int rc;
  unsigned char *pCell;
  int i;
  int hdr;
  u16 szCell;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
  if( rc ) return rc;
  if( pPage->bBusy ){
    rc = SQLITE_CORRUPT_BKPT;
    goto cleardatabasepage_out;
  }
  pPage->bBusy = 1;
  hdr = pPage->hdrOffset;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
      if( rc ) goto cleardatabasepage_out;
    }
    rc = clearCell(pPage, pCell, &szCell);
    if( rc ) goto cleardatabasepage_out;
  }
  if( !pPage->leaf ){
    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
    if( rc ) goto cleardatabasepage_out;
  }else if( pnChange ){
    assert( pPage->intKey || CORRUPT_DB );
    testcase( !pPage->intKey );
    *pnChange += pPage->nCell;
  }
  if( freePageFlag ){
    freePage(pPage, &rc);
  }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
    zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
  }

cleardatabasepage_out:
  pPage->bBusy = 0;
  releasePage(pPage);
  return rc;
}

/*
** Delete all information from a single table in the database.  iTable is
** the page number of the root of the table.  After this routine returns,
** the root page is empty, but still exists.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** read cursors on the table.  Open write cursors are moved to the
** root of the table.
**
** If pnChange is not NULL, then table iTable must be an intkey table. The
** integer value pointed to by pnChange is incremented by the number of
** entries in the table.
*/
int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
  int rc;
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  assert( p->inTrans==TRANS_WRITE );

  rc = saveAllCursors(pBt, (Pgno)iTable, 0);

  if( SQLITE_OK==rc ){
    /* Invalidate all incrblob cursors open on table iTable (assuming iTable
    ** is the root of a table b-tree - if it is not, the following call is
    ** a no-op).  */
    invalidateIncrblobCursors(p, 0, 1);
    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Delete all information from the single table that pCur is open on.
**
** This routine only work for pCur on an ephemeral table.
*/
int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
  return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
}

/*
** Erase all information in a table and add the root of the table to
** the freelist.  Except, the root of the principle table (the one on
** page 1) is never added to the freelist.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** cursors on the table.
**
** If AUTOVACUUM is enabled and the page at iTable is not the last
** root page in the database file, then the last root page 
** in the database file is moved into the slot formerly occupied by
** iTable and that last slot formerly occupied by the last root page
** is added to the freelist instead of iTable.  In this say, all
** root pages are kept at the beginning of the database file, which
** is necessary for AUTOVACUUM to work right.  *piMoved is set to the 
** page number that used to be the last root page in the file before
** the move.  If no page gets moved, *piMoved is set to 0.
** The last root page is recorded in meta[3] and the value of
** meta[3] is updated by this procedure.
*/
static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
  int rc;
  MemPage *pPage = 0;
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( p->inTrans==TRANS_WRITE );

  /* It is illegal to drop a table if any cursors are open on the
  ** database. This is because in auto-vacuum mode the backend may
  ** need to move another root-page to fill a gap left by the deleted
  ** root page. If an open cursor was using this page a problem would 
  ** occur.
  **
  ** This error is caught long before control reaches this point.
  */
  if( NEVER(pBt->pCursor) ){
    sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  /*
  ** It is illegal to drop the sqlite_master table on page 1.  But again,
  ** this error is caught long before reaching this point.
  */
  if( NEVER(iTable<2) ){
    return SQLITE_CORRUPT_BKPT;
  }

  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( rc ) return rc;
  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ){
    releasePage(pPage);
    return rc;
  }

  *piMoved = 0;

#ifdef SQLITE_OMIT_AUTOVACUUM
  freePage(pPage, &rc);
  releasePage(pPage);
#else
  if( pBt->autoVacuum ){
    Pgno maxRootPgno;
    sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);

    if( iTable==maxRootPgno ){
      /* If the table being dropped is the table with the largest root-page
      ** number in the database, put the root page on the free list. 
      */
      freePage(pPage, &rc);
      releasePage(pPage);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }else{
      /* The table being dropped does not have the largest root-page
      ** number in the database. So move the page that does into the 
      ** gap left by the deleted root-page.
      */
      MemPage *pMove;
      releasePage(pPage);
      rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
      releasePage(pMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      pMove = 0;
      rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
      freePage(pMove, &rc);
      releasePage(pMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      *piMoved = maxRootPgno;
    }

    /* Set the new 'max-root-page' value in the database header. This
    ** is the old value less one, less one more if that happens to
    ** be a root-page number, less one again if that is the
    ** PENDING_BYTE_PAGE.
    */
    maxRootPgno--;
    while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
           || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
      maxRootPgno--;
    }
    assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );

    rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
  }else{
    freePage(pPage, &rc);
    releasePage(pPage);
  }
#endif
  return rc;  
}
int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeDropTable(p, iTable, piMoved);
  sqlite3BtreeLeave(p);
  return rc;
}


/*
** This function may only be called if the b-tree connection already
** has a read or write transaction open on the database.
**
** Read the meta-information out of a database file.  Meta[0]
** is the number of free pages currently in the database.  Meta[1]
** through meta[15] are available for use by higher layers.  Meta[0]
** is read-only, the others are read/write.
** 
** The schema layer numbers meta values differently.  At the schema
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible.  So Cookie[0] is the same as Meta[1].
**
** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
** of reading the value out of the header, it instead loads the "DataVersion"
** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
** database file.  It is a number computed by the pager.  But its access
** pattern is the same as header meta values, and so it is convenient to
** read it from this routine.
*/
void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE );
  assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
  assert( pBt->pPage1 );
  assert( idx>=0 && idx<=15 );

  if( idx==BTREE_DATA_VERSION ){
    *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
  }else{
    *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
  }

  /* If auto-vacuum is disabled in this build and this is an auto-vacuum
  ** database, mark the database as read-only.  */
#ifdef SQLITE_OMIT_AUTOVACUUM
  if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
    pBt->btsFlags |= BTS_READ_ONLY;
  }
#endif

  sqlite3BtreeLeave(p);
}

/*
** Write meta-information back into the database.  Meta[0] is
** read-only and may not be written.
*/
int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
  BtShared *pBt = p->pBt;
  unsigned char *pP1;
  int rc;
  assert( idx>=1 && idx<=15 );
  sqlite3BtreeEnter(p);
  assert( p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1!=0 );
  pP1 = pBt->pPage1->aData;
  rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
  if( rc==SQLITE_OK ){
    put4byte(&pP1[36 + idx*4], iMeta);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( idx==BTREE_INCR_VACUUM ){
      assert( pBt->autoVacuum || iMeta==0 );
      assert( iMeta==0 || iMeta==1 );
      pBt->incrVacuum = (u8)iMeta;
    }
#endif
  }
  sqlite3BtreeLeave(p);
  return rc;
}

#ifndef SQLITE_OMIT_BTREECOUNT
/*
** The first argument, pCur, is a cursor opened on some b-tree. Count the
** number of entries in the b-tree and write the result to *pnEntry.
**
** SQLITE_OK is returned if the operation is successfully executed. 
** Otherwise, if an error is encountered (i.e. an IO error or database
** corruption) an SQLite error code is returned.
*/
int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
  i64 nEntry = 0;                      /* Value to return in *pnEntry */
  int rc;                              /* Return code */

  if( pCur->pgnoRoot==0 ){
    *pnEntry = 0;
    return SQLITE_OK;
  }
  rc = moveToRoot(pCur);

  /* Unless an error occurs, the following loop runs one iteration for each
  ** page in the B-Tree structure (not including overflow pages). 
  */
  while( rc==SQLITE_OK ){
    int iIdx;                          /* Index of child node in parent */
    MemPage *pPage;                    /* Current page of the b-tree */

    /* If this is a leaf page or the tree is not an int-key tree, then 
    ** this page contains countable entries. Increment the entry counter
    ** accordingly.
    */
    pPage = pCur->apPage[pCur->iPage];
    if( pPage->leaf || !pPage->intKey ){
      nEntry += pPage->nCell;
    }

    /* pPage is a leaf node. This loop navigates the cursor so that it 
    ** points to the first interior cell that it points to the parent of
    ** the next page in the tree that has not yet been visited. The
    ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
    ** of the page, or to the number of cells in the page if the next page
    ** to visit is the right-child of its parent.
    **
    ** If all pages in the tree have been visited, return SQLITE_OK to the
    ** caller.
    */
    if( pPage->leaf ){
      do {
        if( pCur->iPage==0 ){
          /* All pages of the b-tree have been visited. Return successfully. */
          *pnEntry = nEntry;
          return moveToRoot(pCur);
        }
        moveToParent(pCur);
      }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );

      pCur->aiIdx[pCur->iPage]++;
      pPage = pCur->apPage[pCur->iPage];
    }

    /* Descend to the child node of the cell that the cursor currently 
    ** points at. This is the right-child if (iIdx==pPage->nCell).
    */
    iIdx = pCur->aiIdx[pCur->iPage];
    if( iIdx==pPage->nCell ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
    }else{
      rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
    }
  }

  /* An error has occurred. Return an error code. */
  return rc;
}
#endif

/*
** Return the pager associated with a BTree.  This routine is used for
** testing and debugging only.
*/
Pager *sqlite3BtreePager(Btree *p){
  return p->pBt->pPager;
}

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(
  IntegrityCk *pCheck,
  const char *zFormat,
  ...
){
  va_list ap;
  if( !pCheck->mxErr ) return;
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( pCheck->zPfx ){
    sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
  }
  sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK

/*
** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
** corresponds to page iPg is already set.
*/
static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
  assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
  return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
}

/*
** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
*/
static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
  assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
  pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
}


/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 or more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
    checkAppendMsg(pCheck, "invalid page number %d", iPage);
    return 1;
  }
  if( getPageReferenced(pCheck, iPage) ){
    checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
    return 1;
  }
  setPageReferenced(pCheck, iPage);
  return 0;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to 
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
*/
static void checkPtrmap(
  IntegrityCk *pCheck,   /* Integrity check context */
  Pgno iChild,           /* Child page number */
  u8 eType,              /* Expected pointer map type */
  Pgno iParent           /* Expected pointer map parent page number */
){
  int rc;
  u8 ePtrmapType;
  Pgno iPtrmapParent;

  rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
    checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
    return;
  }

  if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
    checkAppendMsg(pCheck,
      "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
      iChild, eType, iParent, ePtrmapType, iPtrmapParent);
  }
}
#endif

/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
  IntegrityCk *pCheck,  /* Integrity checking context */
  int isFreeList,       /* True for a freelist.  False for overflow page list */
  int iPage,            /* Page number for first page in the list */
  int N                 /* Expected number of pages in the list */
){
  int i;
  int expected = N;
  int iFirst = iPage;
  while( N-- > 0 && pCheck->mxErr ){
    DbPage *pOvflPage;
    unsigned char *pOvflData;
    if( iPage<1 ){
      checkAppendMsg(pCheck,
         "%d of %d pages missing from overflow list starting at %d",
          N+1, expected, iFirst);
      break;
    }
    if( checkRef(pCheck, iPage) ) break;
    if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
      checkAppendMsg(pCheck, "failed to get page %d", iPage);
      break;
    }
    pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
    if( isFreeList ){
      int n = get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pCheck->pBt->autoVacuum ){
        checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
      }
#endif
      if( n>(int)pCheck->pBt->usableSize/4-2 ){
        checkAppendMsg(pCheck,
           "freelist leaf count too big on page %d", iPage);
        N--;
      }else{
        for(i=0; i<n; i++){
          Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
          if( pCheck->pBt->autoVacuum ){
            checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
          }
#endif
          checkRef(pCheck, iFreePage);
        }
        N -= n;
      }
    }
#ifndef SQLITE_OMIT_AUTOVACUUM
    else{
      /* If this database supports auto-vacuum and iPage is not the last
      ** page in this overflow list, check that the pointer-map entry for
      ** the following page matches iPage.
      */
      if( pCheck->pBt->autoVacuum && N>0 ){
        i = get4byte(pOvflData);
        checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
      }
    }
#endif
    iPage = get4byte(pOvflData);
    sqlite3PagerUnref(pOvflPage);

    if( isFreeList && N<(iPage!=0) ){
      checkAppendMsg(pCheck, "free-page count in header is too small");
    }
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** An implementation of a min-heap.
**
** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
** and aHeap[N*2+1].
**
** The heap property is this:  Every node is less than or equal to both
** of its daughter nodes.  A consequence of the heap property is that the
** root node aHeap[1] is always the minimum value currently in the heap.
**
** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
** the heap, preserving the heap property.  The btreeHeapPull() routine
** removes the root element from the heap (the minimum value in the heap)
** and then moves other nodes around as necessary to preserve the heap
** property.
**
** This heap is used for cell overlap and coverage testing.  Each u32
** entry represents the span of a cell or freeblock on a btree page.  
** The upper 16 bits are the index of the first byte of a range and the
** lower 16 bits are the index of the last byte of that range.
*/
static void btreeHeapInsert(u32 *aHeap, u32 x){
  u32 j, i = ++aHeap[0];
  aHeap[i] = x;
  while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
    x = aHeap[j];
    aHeap[j] = aHeap[i];
    aHeap[i] = x;
    i = j;
  }
}
static int btreeHeapPull(u32 *aHeap, u32 *pOut){
  u32 j, i, x;
  if( (x = aHeap[0])==0 ) return 0;
  *pOut = aHeap[1];
  aHeap[1] = aHeap[x];
  aHeap[x] = 0xffffffff;
  aHeap[0]--;
  i = 1;
  while( (j = i*2)<=aHeap[0] ){
    if( aHeap[j]>aHeap[j+1] ) j++;
    if( aHeap[i]<aHeap[j] ) break;
    x = aHeap[i];
    aHeap[i] = aHeap[j];
    aHeap[j] = x;
    i = j;
  }
  return 1;  
}

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Do various sanity checks on a single page of a tree.  Return
** the tree depth.  Root pages return 0.  Parents of root pages
** return 1, and so forth.
** 
** These checks are done:
**
**      1.  Make sure that cells and freeblocks do not overlap
**          but combine to completely cover the page.
**      2.  Make sure integer cell keys are in order.
**      3.  Check the integrity of overflow pages.
**      4.  Recursively call checkTreePage on all children.
**      5.  Verify that the depth of all children is the same.
*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */
  i64 *piMinKey,        /* Write minimum integer primary key here */
  i64 maxKey            /* Error if integer primary key greater than this */
){
  MemPage *pPage = 0;      /* The page being analyzed */
  int i;                   /* Loop counter */
  int rc;                  /* Result code from subroutine call */
  int depth = -1, d2;      /* Depth of a subtree */
  int pgno;                /* Page number */
  int nFrag;               /* Number of fragmented bytes on the page */
  int hdr;                 /* Offset to the page header */
  int cellStart;           /* Offset to the start of the cell pointer array */
  int nCell;               /* Number of cells */
  int doCoverageCheck = 1; /* True if cell coverage checking should be done */
  int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
                           ** False if IPK must be strictly less than maxKey */
  u8 *data;                /* Page content */
  u8 *pCell;               /* Cell content */
  u8 *pCellIdx;            /* Next element of the cell pointer array */
  BtShared *pBt;           /* The BtShared object that owns pPage */
  u32 pc;                  /* Address of a cell */
  u32 usableSize;          /* Usable size of the page */
  u32 contentOffset;       /* Offset to the start of the cell content area */
  u32 *heap = 0;           /* Min-heap used for checking cell coverage */
  u32 x, prev = 0;         /* Next and previous entry on the min-heap */
  const char *saved_zPfx = pCheck->zPfx;
  int saved_v1 = pCheck->v1;
  int saved_v2 = pCheck->v2;
  u8 savedIsInit = 0;

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage) ) return 0;
  pCheck->zPfx = "Page %d: ";
  pCheck->v1 = iPage;
  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck,
       "unable to get the page. error code=%d", rc);
    goto end_of_check;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */
  savedIsInit = pPage->isInit;
  pPage->isInit = 0;
  if( (rc = btreeInitPage(pPage))!=0 ){
    assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
    checkAppendMsg(pCheck,
                   "btreeInitPage() returns error code %d", rc);
    goto end_of_check;
  }
  data = pPage->aData;
  hdr = pPage->hdrOffset;

  /* Set up for cell analysis */
  pCheck->zPfx = "On tree page %d cell %d: ";
  contentOffset = get2byteNotZero(&data[hdr+5]);
  assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */

  /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
  ** number of cells on the page. */
  nCell = get2byte(&data[hdr+3]);
  assert( pPage->nCell==nCell );

  /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
  ** immediately follows the b-tree page header. */
  cellStart = hdr + 12 - 4*pPage->leaf;
  assert( pPage->aCellIdx==&data[cellStart] );
  pCellIdx = &data[cellStart + 2*(nCell-1)];

  if( !pPage->leaf ){
    /* Analyze the right-child page of internal pages */
    pgno = get4byte(&data[hdr+8]);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      pCheck->zPfx = "On page %d at right child: ";
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
    }
#endif
    depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
    keyCanBeEqual = 0;
  }else{
    /* For leaf pages, the coverage check will occur in the same loop
    ** as the other cell checks, so initialize the heap.  */
    heap = pCheck->heap;
    heap[0] = 0;
  }

  /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
  ** integer offsets to the cell contents. */
  for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
    CellInfo info;

    /* Check cell size */
    pCheck->v2 = i;
    assert( pCellIdx==&data[cellStart + i*2] );
    pc = get2byteAligned(pCellIdx);
    pCellIdx -= 2;
    if( pc<contentOffset || pc>usableSize-4 ){
      checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
                             pc, contentOffset, usableSize-4);
      doCoverageCheck = 0;
      continue;
    }
    pCell = &data[pc];
    pPage->xParseCell(pPage, pCell, &info);
    if( pc+info.nSize>usableSize ){
      checkAppendMsg(pCheck, "Extends off end of page");
      doCoverageCheck = 0;
      continue;
    }

    /* Check for integer primary key out of range */
    if( pPage->intKey ){
      if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
        checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
      }
      maxKey = info.nKey;
    }

    /* Check the content overflow list */
    if( info.nPayload>info.nLocal ){
      int nPage;       /* Number of pages on the overflow chain */
      Pgno pgnoOvfl;   /* First page of the overflow chain */
      assert( pc + info.nSize - 4 <= usableSize );
      nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
      pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
      }
#endif
      checkList(pCheck, 0, pgnoOvfl, nPage);
    }

    if( !pPage->leaf ){
      /* Check sanity of left child page for internal pages */
      pgno = get4byte(pCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
      }
#endif
      d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
      keyCanBeEqual = 0;
      if( d2!=depth ){
        checkAppendMsg(pCheck, "Child page depth differs");
        depth = d2;
      }
    }else{
      /* Populate the coverage-checking heap for leaf pages */
      btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
    }
  }
  *piMinKey = maxKey;

  /* Check for complete coverage of the page
  */
  pCheck->zPfx = 0;
  if( doCoverageCheck && pCheck->mxErr>0 ){
    /* For leaf pages, the min-heap has already been initialized and the
    ** cells have already been inserted.  But for internal pages, that has
    ** not yet been done, so do it now */
    if( !pPage->leaf ){
      heap = pCheck->heap;
      heap[0] = 0;
      for(i=nCell-1; i>=0; i--){
        u32 size;
        pc = get2byteAligned(&data[cellStart+i*2]);
        size = pPage->xCellSize(pPage, &data[pc]);
        btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
      }
    }
    /* Add the freeblocks to the min-heap
    **
    ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
    ** is the offset of the first freeblock, or zero if there are no
    ** freeblocks on the page. 
    */
    i = get2byte(&data[hdr+1]);
    while( i>0 ){
      int size, j;
      assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
      size = get2byte(&data[i+2]);
      assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
      btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
      /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
      ** big-endian integer which is the offset in the b-tree page of the next
      ** freeblock in the chain, or zero if the freeblock is the last on the
      ** chain. */
      j = get2byte(&data[i]);
      /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
      ** increasing offset. */
      assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
      assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
      i = j;
    }
    /* Analyze the min-heap looking for overlap between cells and/or 
    ** freeblocks, and counting the number of untracked bytes in nFrag.
    ** 
    ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
    ** There is an implied first entry the covers the page header, the cell
    ** pointer index, and the gap between the cell pointer index and the start
    ** of cell content.  
    **
    ** The loop below pulls entries from the min-heap in order and compares
    ** the start_address against the previous end_address.  If there is an
    ** overlap, that means bytes are used multiple times.  If there is a gap,
    ** that gap is added to the fragmentation count.
    */
    nFrag = 0;
    prev = contentOffset - 1;   /* Implied first min-heap entry */
    while( btreeHeapPull(heap,&x) ){
      if( (prev&0xffff)>=(x>>16) ){
        checkAppendMsg(pCheck,
          "Multiple uses for byte %u of page %d", x>>16, iPage);
        break;
      }else{
        nFrag += (x>>16) - (prev&0xffff) - 1;
        prev = x;
      }
    }
    nFrag += usableSize - (prev&0xffff) - 1;
    /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
    ** is stored in the fifth field of the b-tree page header.
    ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
    ** number of fragmented free bytes within the cell content area.
    */
    if( heap[0]==0 && nFrag!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          nFrag, data[hdr+7], iPage);
    }
  }

end_of_check:
  if( !doCoverageCheck ) pPage->isInit = savedIsInit;
  releasePage(pPage);
  pCheck->zPfx = saved_zPfx;
  pCheck->v1 = saved_v1;
  pCheck->v2 = saved_v2;
  return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** This routine does a complete check of the given BTree file.  aRoot[] is
** an array of pages numbers were each page number is the root page of
** a table.  nRoot is the number of entries in aRoot.
**
** A read-only or read-write transaction must be opened before calling
** this function.
**
** Write the number of error seen in *pnErr.  Except for some memory
** allocation errors,  an error message held in memory obtained from
** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
** returned.  If a memory allocation error occurs, NULL is returned.
*/
char *sqlite3BtreeIntegrityCheck(
  Btree *p,     /* The btree to be checked */
  int *aRoot,   /* An array of root pages numbers for individual trees */
  int nRoot,    /* Number of entries in aRoot[] */
  int mxErr,    /* Stop reporting errors after this many */
  int *pnErr    /* Write number of errors seen to this variable */
){
  Pgno i;
  IntegrityCk sCheck;
  BtShared *pBt = p->pBt;
  int savedDbFlags = pBt->db->flags;
  char zErr[100];
  VVA_ONLY( int nRef );

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
  VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
  assert( nRef>=0 );
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = btreePagecount(sCheck.pBt);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  sCheck.zPfx = 0;
  sCheck.v1 = 0;
  sCheck.v2 = 0;
  sCheck.aPgRef = 0;
  sCheck.heap = 0;
  sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
  sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
  if( sCheck.nPage==0 ){
    goto integrity_ck_cleanup;
  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
  if( !sCheck.aPgRef ){
    sCheck.mallocFailed = 1;
    goto integrity_ck_cleanup;
  }
  sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
  if( sCheck.heap==0 ){
    sCheck.mallocFailed = 1;
    goto integrity_ck_cleanup;
  }

  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);

  /* Check the integrity of the freelist
  */
  sCheck.zPfx = "Main freelist: ";
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]));
  sCheck.zPfx = 0;

  /* Check all the tables.
  */
  testcase( pBt->db->flags & SQLITE_CellSizeCk );
  pBt->db->flags &= ~SQLITE_CellSizeCk;
  for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
    i64 notUsed;
    if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && aRoot[i]>1 ){
      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
    }
#endif
    checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
  }
  pBt->db->flags = savedDbFlags;

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( getPageReferenced(&sCheck, i)==0 ){
      checkAppendMsg(&sCheck, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( getPageReferenced(&sCheck, i)==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, "Page %d is never used", i);
    }
    if( getPageReferenced(&sCheck, i)!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Clean  up and report errors.
  */
integrity_ck_cleanup:
  sqlite3PageFree(sCheck.heap);
  sqlite3_free(sCheck.aPgRef);
  if( sCheck.mallocFailed ){
    sqlite3StrAccumReset(&sCheck.errMsg);
    sCheck.nErr++;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
  /* Make sure this analysis did not leave any unref() pages. */
  assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
  sqlite3BtreeLeave(p);
  return sqlite3StrAccumFinish(&sCheck.errMsg);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** Return the full pathname of the underlying database file.  Return
** an empty string if the database is in-memory or a TEMP database.
**
** The pager filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetFilename(Btree *p){
  assert( p->pBt->pPager!=0 );
  return sqlite3PagerFilename(p->pBt->pPager, 1);
}

/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.
**
** The pager journal filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetJournalname(Btree *p){
  assert( p->pBt->pPager!=0 );
  return sqlite3PagerJournalname(p->pBt->pPager);
}

/*
** Return non-zero if a transaction is active.
*/
int sqlite3BtreeIsInTrans(Btree *p){
  assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
  return (p && (p->inTrans==TRANS_WRITE));
}

#ifndef SQLITE_OMIT_WAL
/*
** Run a checkpoint on the Btree passed as the first argument.
**
** Return SQLITE_LOCKED if this or any other connection has an open 
** transaction on the shared-cache the argument Btree is connected to.
**
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
*/
int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
  int rc = SQLITE_OK;
  if( p ){
    BtShared *pBt = p->pBt;
    sqlite3BtreeEnter(p);
    if( pBt->inTransaction!=TRANS_NONE ){
      rc = SQLITE_LOCKED;
    }else{
      rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
    }
    sqlite3BtreeLeave(p);
  }
  return rc;
}
#endif

/*
** Return non-zero if a read (or write) transaction is active.
*/
int sqlite3BtreeIsInReadTrans(Btree *p){
  assert( p );
  assert( sqlite3_mutex_held(p->db->mutex) );
  return p->inTrans!=TRANS_NONE;
}

int sqlite3BtreeIsInBackup(Btree *p){
  assert( p );
  assert( sqlite3_mutex_held(p->db->mutex) );
  return p->nBackup!=0;
}

/*
** This function returns a pointer to a blob of memory associated with
** a single shared-btree. The memory is used by client code for its own
** purposes (for example, to store a high-level schema associated with 
** the shared-btree). The btree layer manages reference counting issues.
**
** The first time this is called on a shared-btree, nBytes bytes of memory
** are allocated, zeroed, and returned to the caller. For each subsequent 
** call the nBytes parameter is ignored and a pointer to the same blob
** of memory returned. 
**
** If the nBytes parameter is 0 and the blob of memory has not yet been
** allocated, a null pointer is returned. If the blob has already been
** allocated, it is returned as normal.
**
** Just before the shared-btree is closed, the function passed as the 
** xFree argument when the memory allocation was made is invoked on the 
** blob of allocated memory. The xFree function should not call sqlite3_free()
** on the memory, the btree layer does that.
*/
void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  if( !pBt->pSchema && nBytes ){
    pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
    pBt->xFreeSchema = xFree;
  }
  sqlite3BtreeLeave(p);
  return pBt->pSchema;
}

/*
** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 
** btree as the argument handle holds an exclusive lock on the 
** sqlite_master table. Otherwise SQLITE_OK.
*/
int sqlite3BtreeSchemaLocked(Btree *p){
  int rc;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
  assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
  sqlite3BtreeLeave(p);
  return rc;
}


#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Obtain a lock on the table whose root page is iTab.  The
** lock is a write lock if isWritelock is true or a read lock
** if it is false.
*/
int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
  int rc = SQLITE_OK;
  assert( p->inTrans!=TRANS_NONE );
  if( p->sharable ){
    u8 lockType = READ_LOCK + isWriteLock;
    assert( READ_LOCK+1==WRITE_LOCK );
    assert( isWriteLock==0 || isWriteLock==1 );

    sqlite3BtreeEnter(p);
    rc = querySharedCacheTableLock(p, iTab, lockType);
    if( rc==SQLITE_OK ){
      rc = setSharedCacheTableLock(p, iTab, lockType);
    }
    sqlite3BtreeLeave(p);
  }
  return rc;
}
#endif

#ifndef SQLITE_OMIT_INCRBLOB
/*
** Argument pCsr must be a cursor opened for writing on an 
** INTKEY table currently pointing at a valid table entry. 
** This function modifies the data stored as part of that entry.
**
** Only the data content may only be modified, it is not possible to 
** change the length of the data stored. If this function is called with
** parameters that attempt to write past the end of the existing data,
** no modifications are made and SQLITE_CORRUPT is returned.
*/
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  int rc;
  assert( cursorOwnsBtShared(pCsr) );
  assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
  assert( pCsr->curFlags & BTCF_Incrblob );

  rc = restoreCursorPosition(pCsr);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pCsr->eState!=CURSOR_REQUIRESEEK );
  if( pCsr->eState!=CURSOR_VALID ){
    return SQLITE_ABORT;
  }

  /* Save the positions of all other cursors open on this table. This is
  ** required in case any of them are holding references to an xFetch
  ** version of the b-tree page modified by the accessPayload call below.
  **
  ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
  ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
  ** saveAllCursors can only return SQLITE_OK.
  */
  VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
  assert( rc==SQLITE_OK );

  /* Check some assumptions: 
  **   (a) the cursor is open for writing,
  **   (b) there is a read/write transaction open,
  **   (c) the connection holds a write-lock on the table (if required),
  **   (d) there are no conflicting read-locks, and
  **   (e) the cursor points at a valid row of an intKey table.
  */
  if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
    return SQLITE_READONLY;
  }
  assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
              && pCsr->pBt->inTransaction==TRANS_WRITE );
  assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
  assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
  assert( pCsr->apPage[pCsr->iPage]->intKey );

  return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
}

/* 
** Mark this cursor as an incremental blob cursor.
*/
void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
  pCur->curFlags |= BTCF_Incrblob;
  pCur->pBtree->hasIncrblobCur = 1;
}
#endif

/*
** Set both the "read version" (single byte at byte offset 18) and 
** "write version" (single byte at byte offset 19) fields in the database
** header to iVersion.
*/
int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
  BtShared *pBt = pBtree->pBt;
  int rc;                         /* Return code */
 
  assert( iVersion==1 || iVersion==2 );

  /* If setting the version fields to 1, do not automatically open the
  ** WAL connection, even if the version fields are currently set to 2.
  */
  pBt->btsFlags &= ~BTS_NO_WAL;
  if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;

  rc = sqlite3BtreeBeginTrans(pBtree, 0);
  if( rc==SQLITE_OK ){
    u8 *aData = pBt->pPage1->aData;
    if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
      rc = sqlite3BtreeBeginTrans(pBtree, 2);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
        if( rc==SQLITE_OK ){
          aData[18] = (u8)iVersion;
          aData[19] = (u8)iVersion;
        }
      }
    }
  }

  pBt->btsFlags &= ~BTS_NO_WAL;
  return rc;
}

/*
** Return true if the cursor has a hint specified.  This routine is
** only used from within assert() statements
*/
int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
  return (pCsr->hints & mask)!=0;
}

/*
** Return true if the given Btree is read-only.
*/
int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}

/*
** Return the size of the header added to each page by this module.
*/
int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }

#if !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** Return true if the Btree passed as the only argument is sharable.
*/
int sqlite3BtreeSharable(Btree *p){
  return p->sharable;
}

/*
** Return the number of connections to the BtShared object accessed by
** the Btree handle passed as the only argument. For private caches 
** this is always 1. For shared caches it may be 1 or greater.
*/
int sqlite3BtreeConnectionCount(Btree *p){
  testcase( p->sharable );
  return p->pBt->nRef;
}
#endif