/ Check-in [8a036628]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Updates to requirements marks. No changes to code.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1:8a0366285b94dc43d932736e7b1eedb71e241857
User & Date: drh 2013-11-09 19:47:15
Context
2013-11-09
21:19
Updates to documentation on sqlite3_last_insert_rowid(). No changes to code. check-in: a4c5804e user: drh tags: trunk
19:47
Updates to requirements marks. No changes to code. check-in: 8a036628 user: drh tags: trunk
18:15
Throw an error if AUTOINCREMENT appears in a WITHOUT ROWID table. Updates to API documentation to discuss WITHOUT ROWID. check-in: b1abb2b0 user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/func.c.

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  assert( argc==1 );
  UNUSED_PARAMETER(argc);
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE_INTEGER: {
      i64 iVal = sqlite3_value_int64(argv[0]);
      if( iVal<0 ){
        if( (iVal<<1)==0 ){
          /* IMP: R-35460-15084 If X is the integer -9223372036854775807 then
          ** abs(X) throws an integer overflow error since there is no
          ** equivalent positive 64-bit two complement value. */
          sqlite3_result_error(context, "integer overflow", -1);
          return;
        }
        iVal = -iVal;
      } 
      sqlite3_result_int64(context, iVal);







|
|







134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  assert( argc==1 );
  UNUSED_PARAMETER(argc);
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE_INTEGER: {
      i64 iVal = sqlite3_value_int64(argv[0]);
      if( iVal<0 ){
        if( (iVal<<1)==0 ){
          /* IMP: R-31676-45509 If X is the integer -9223372036854775808
          ** then abs(X) throws an integer overflow error since there is no
          ** equivalent positive 64-bit two complement value. */
          sqlite3_result_error(context, "integer overflow", -1);
          return;
        }
        iVal = -iVal;
      } 
      sqlite3_result_int64(context, iVal);

Changes to test/e_createtable.test.

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
....
1122
1123
1124
1125
1126
1127
1128











1129
1130
1131
1132
1133
1134
1135
....
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
....
1248
1249
1250
1251
1252
1253
1254
1255

1256
1257
1258
1259
1260
1261
1262
1263
....
1271
1272
1273
1274
1275
1276
1277








1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
....
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
....
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
....
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
# Tests for statements regarding constraints (PRIMARY KEY, UNIQUE, NOT 
# NULL and CHECK constraints).
#

# EVIDENCE-OF: R-52382-54248 Each table in SQLite may have at most one
# PRIMARY KEY.
# 
# EVIDENCE-OF: R-18080-47271 If there is more than one PRIMARY KEY
# clause in a single CREATE TABLE statement, it is an error.
#
#     To test the two above, show that zero primary keys is Ok, one primary
#     key is Ok, and two or more primary keys is an error.
#
drop_all_tables
do_createtable_tests 4.1.1 {
  1    "CREATE TABLE t1(a, b, c)"                                        {}
................................................................................
  1    "CREATE TABLE t5(a PRIMARY KEY, b PRIMARY KEY, c)"                {}
  2    "CREATE TABLE t5(a, b PRIMARY KEY, c, PRIMARY KEY(a))"            {}
  3    "CREATE TABLE t5(a INTEGER PRIMARY KEY, b PRIMARY KEY, c)"        {}
  4    "CREATE TABLE t5(a INTEGER PRIMARY KEY, b, c, PRIMARY KEY(b, c))" {}
  5    "CREATE TABLE t5(a PRIMARY KEY, b, c, PRIMARY KEY(a))"            {}
  6    "CREATE TABLE t5(a INTEGER PRIMARY KEY, b, c, PRIMARY KEY(a))"    {}
}












proc table_pk {tbl} { 
  set pk [list]
  db eval "pragma table_info($tbl)" a {
    if {$a(pk)} { lappend pk $a(name) }
  }
  set pk
................................................................................
  1.2    "CREATE TABLE t5(a PRIMARY KEY, b, c)"               {a}

  2.1    "CREATE TABLE t5(a, b, c, PRIMARY KEY(a))"           {a}
  2.2    "CREATE TABLE t5(a, b, c, PRIMARY KEY(c,b,a))"       {a b c}
  2.3    "CREATE TABLE t5(a, b INTEGER PRIMARY KEY, c)"       {b}
}

# EVIDENCE-OF: R-33986-09410 Each row in a table with a primary key must
# feature a unique combination of values in its primary key columns.
#
# EVIDENCE-OF: R-39102-06737 If an INSERT or UPDATE statement attempts
# to modify the table content so that two or more rows feature identical
# primary key values, it is a constraint violation.
#
drop_all_tables
do_execsql_test 4.3.0 {
................................................................................
  11   "INSERT INTO t2 VALUES('brambles', NULL)"     {}
  12   "INSERT INTO t2 VALUES(X'ABCDEF', NULL)"      {}

  13   "INSERT INTO t2 VALUES(NULL, NULL)"           {}
  14   "INSERT INTO t2 VALUES(NULL, NULL)"           {}
}

# EVIDENCE-OF: R-61866-38053 Unless the column is an INTEGER PRIMARY KEY

# SQLite allows NULL values in a PRIMARY KEY column.
#
#     If the column is an integer primary key, attempting to insert a NULL
#     into the column triggers the auto-increment behavior. Attempting
#     to use UPDATE to set an ipk column to a NULL value is an error.
#
do_createtable_tests 4.5.1 {
  1    "SELECT count(*) FROM t1 WHERE x IS NULL"                   3
................................................................................
  INSERT INTO t3 VALUES('x', NULL, 'y');
  SELECT u FROM t3;
} {1 2}
do_catchsql_test 4.5.3 {
  INSERT INTO t3 VALUES(2, 5, 3);
  UPDATE t3 SET u = NULL WHERE s = 2;
} {1 {datatype mismatch}}









# EVIDENCE-OF: R-00227-21080 A UNIQUE constraint is similar to a PRIMARY
# KEY constraint, except that a single table may have any number of
# UNIQUE constraints.
#
drop_all_tables
do_createtable_tests 4.6 {
  1    "CREATE TABLE t1(a UNIQUE, b UNIQUE)"                       {}
  2    "CREATE TABLE t2(a UNIQUE, b, c, UNIQUE(c, b))"             {}
  3    "CREATE TABLE t3(a, b, c, UNIQUE(a), UNIQUE(b), UNIQUE(c))" {}
  4    "CREATE TABLE t4(a, b, c, UNIQUE(a, b, c))"                 {}
}

# EVIDENCE-OF: R-55240-58877 For each UNIQUE constraint on the table,
# each row must feature a unique combination of values in the columns
# identified by the UNIQUE constraint.
#
# EVIDENCE-OF: R-47733-51480 If an INSERT or UPDATE statement attempts
# to modify the table content so that two or more rows feature identical
# values in a set of columns that are subject to a UNIQUE constraint, it
# is a constraint violation.
#
do_execsql_test 4.7.0 {
  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(4.3, 5.5);
  INSERT INTO t1 VALUES('reveal', 'variableness');
  INSERT INTO t1 VALUES(X'123456', X'654321');

................................................................................
  11   "INSERT INTO t4 VALUES('uvw', 1, 1)"          {{t4.a, t4.b, t4.c}}

  12   "UPDATE t4 SET a='xyx' WHERE rowid=3"         {{t4.a, t4.b, t4.c}}
  13   "UPDATE t4 SET b=1 WHERE rowid=2"             {{t4.a, t4.b, t4.c}}
  14   "UPDATE t4 SET a=0, b=0, c=0"                 {{t4.a, t4.b, t4.c}}
}

# EVIDENCE-OF: R-21289-11559 As with PRIMARY KEY constraints, for the
# purposes of UNIQUE constraints NULL values are considered distinct
# from all other values (including other NULLs).
#
do_createtable_tests 4.8 {
  1    "INSERT INTO t1 VALUES(NULL, NULL)"           {}
  2    "INSERT INTO t1 VALUES(NULL, NULL)"           {}
  3    "UPDATE t1 SET a = NULL"                      {}
  4    "UPDATE t1 SET b = NULL"                      {}

................................................................................
  5    "INSERT INTO t4 VALUES(NULL, NULL, NULL)"     {}
  6    "INSERT INTO t4 VALUES(NULL, NULL, NULL)"     {}
  7    "UPDATE t4 SET a = NULL"                      {}
  8    "UPDATE t4 SET b = NULL"                      {}
  9    "UPDATE t4 SET c = NULL"                      {}
}

# EVIDENCE-OF: R-26983-26377 INTEGER PRIMARY KEY columns aside, both
# UNIQUE and PRIMARY KEY constraints are implemented by creating an
# index in the database (in the same way as a "CREATE UNIQUE INDEX"
# statement would).
do_createtable_tests 4.9 -repair drop_all_tables -query {
  SELECT count(*) FROM sqlite_master WHERE type='index'
} {
  1    "CREATE TABLE t1(a TEXT PRIMARY KEY, b)"              1
  2    "CREATE TABLE t1(a INTEGER PRIMARY KEY, b)"           0
  3    "CREATE TABLE t1(a TEXT UNIQUE, b)"                   1
  4    "CREATE TABLE t1(a PRIMARY KEY, b TEXT UNIQUE)"       2
  5    "CREATE TABLE t1(a PRIMARY KEY, b, c, UNIQUE(c, b))"  2
}

# EVIDENCE-OF: R-02252-33116 Such an index is used like any other index
# in the database to optimize queries.
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
................................................................................
    DELETE FROM $tbl;
    INSERT INTO $tbl ($col) VALUES(0);
    SELECT (rowid==$col) FROM $tbl;
    DELETE FROM $tbl;
  }]] 0
}

# EVIDENCE-OF: R-53738-31673 With one exception, if a table has a
# primary key that consists of a single column, and the declared type of
# that column is "INTEGER" in any mixture of upper and lower case, then
# the column becomes an alias for the rowid.
#
# EVIDENCE-OF: R-45951-08347 if the declaration of a column with
# declared type "INTEGER" includes an "PRIMARY KEY DESC" clause, it does
# not become an alias for the rowid and is not classified as an integer
# primary key.
#
do_createtable_tests 5.3 -tclquery { 







|
|







 







>
>
>
>
>
>
>
>
>
>
>







 







|
|







 







|
>
|







 







>
>
>
>
>
>
>
>













|
|


|
|
<
<







 







|
|
|







 







|
|
|
<










|







 







|
|
|
|







1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
....
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
....
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
....
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
....
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316


1317
1318
1319
1320
1321
1322
1323
....
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
....
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
....
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
# Tests for statements regarding constraints (PRIMARY KEY, UNIQUE, NOT 
# NULL and CHECK constraints).
#

# EVIDENCE-OF: R-52382-54248 Each table in SQLite may have at most one
# PRIMARY KEY.
# 
# EVIDENCE-OF: R-62315-57691 An error is rasied if more than one PRIMARY
# KEY clause appears in a CREATE TABLE statement.
#
#     To test the two above, show that zero primary keys is Ok, one primary
#     key is Ok, and two or more primary keys is an error.
#
drop_all_tables
do_createtable_tests 4.1.1 {
  1    "CREATE TABLE t1(a, b, c)"                                        {}
................................................................................
  1    "CREATE TABLE t5(a PRIMARY KEY, b PRIMARY KEY, c)"                {}
  2    "CREATE TABLE t5(a, b PRIMARY KEY, c, PRIMARY KEY(a))"            {}
  3    "CREATE TABLE t5(a INTEGER PRIMARY KEY, b PRIMARY KEY, c)"        {}
  4    "CREATE TABLE t5(a INTEGER PRIMARY KEY, b, c, PRIMARY KEY(b, c))" {}
  5    "CREATE TABLE t5(a PRIMARY KEY, b, c, PRIMARY KEY(a))"            {}
  6    "CREATE TABLE t5(a INTEGER PRIMARY KEY, b, c, PRIMARY KEY(a))"    {}
}

# EVIDENCE-OF: R-54755-39291 The PRIMARY KEY is optional for ordinary
# tables but is required for WITHOUT ROWID tables.
#
do_catchsql_test 4.1.3 {
  CREATE TABLE t6(a, b); --ok
} {0 {}}
do_catchsql_test 4.1.4 {
  CREATE TABLE t7(a, b) WITHOUT ROWID; --Error, no PRIMARY KEY
} {1 {PRIMARY KEY missing on table t7}}


proc table_pk {tbl} { 
  set pk [list]
  db eval "pragma table_info($tbl)" a {
    if {$a(pk)} { lappend pk $a(name) }
  }
  set pk
................................................................................
  1.2    "CREATE TABLE t5(a PRIMARY KEY, b, c)"               {a}

  2.1    "CREATE TABLE t5(a, b, c, PRIMARY KEY(a))"           {a}
  2.2    "CREATE TABLE t5(a, b, c, PRIMARY KEY(c,b,a))"       {a b c}
  2.3    "CREATE TABLE t5(a, b INTEGER PRIMARY KEY, c)"       {b}
}

# EVIDENCE-OF: R-59124-61339 Each row in a table with a primary key must
# have a unique combination of values in its primary key columns.
#
# EVIDENCE-OF: R-39102-06737 If an INSERT or UPDATE statement attempts
# to modify the table content so that two or more rows feature identical
# primary key values, it is a constraint violation.
#
drop_all_tables
do_execsql_test 4.3.0 {
................................................................................
  11   "INSERT INTO t2 VALUES('brambles', NULL)"     {}
  12   "INSERT INTO t2 VALUES(X'ABCDEF', NULL)"      {}

  13   "INSERT INTO t2 VALUES(NULL, NULL)"           {}
  14   "INSERT INTO t2 VALUES(NULL, NULL)"           {}
}

# EVIDENCE-OF: R-35113-43214 Unless the column is an INTEGER PRIMARY KEY
# or the table is a WITHOUT ROWID table or the column is declared NOT
# NULL, SQLite allows NULL values in a PRIMARY KEY column.
#
#     If the column is an integer primary key, attempting to insert a NULL
#     into the column triggers the auto-increment behavior. Attempting
#     to use UPDATE to set an ipk column to a NULL value is an error.
#
do_createtable_tests 4.5.1 {
  1    "SELECT count(*) FROM t1 WHERE x IS NULL"                   3
................................................................................
  INSERT INTO t3 VALUES('x', NULL, 'y');
  SELECT u FROM t3;
} {1 2}
do_catchsql_test 4.5.3 {
  INSERT INTO t3 VALUES(2, 5, 3);
  UPDATE t3 SET u = NULL WHERE s = 2;
} {1 {datatype mismatch}}
do_catchsql_test 4.5.4 {
  CREATE TABLE t4(s, u INT PRIMARY KEY, v) WITHOUT ROWID;
  INSERT INTO t4 VALUES(1, NULL, 2);
} {1 {NOT NULL constraint failed: t4.u}}
do_catchsql_test 4.5.5 {
  CREATE TABLE t5(s, u INT PRIMARY KEY NOT NULL, v);
  INSERT INTO t5 VALUES(1, NULL, 2);
} {1 {NOT NULL constraint failed: t5.u}}

# EVIDENCE-OF: R-00227-21080 A UNIQUE constraint is similar to a PRIMARY
# KEY constraint, except that a single table may have any number of
# UNIQUE constraints.
#
drop_all_tables
do_createtable_tests 4.6 {
  1    "CREATE TABLE t1(a UNIQUE, b UNIQUE)"                       {}
  2    "CREATE TABLE t2(a UNIQUE, b, c, UNIQUE(c, b))"             {}
  3    "CREATE TABLE t3(a, b, c, UNIQUE(a), UNIQUE(b), UNIQUE(c))" {}
  4    "CREATE TABLE t4(a, b, c, UNIQUE(a, b, c))"                 {}
}

# EVIDENCE-OF: R-30981-64168 For each UNIQUE constraint on the table,
# each row must contain a unique combination of values in the columns
# identified by the UNIQUE constraint.
#
# EVIDENCE-OF: R-59124-61339 Each row in a table with a primary key must
# have a unique combination of values in its primary key columns.


#
do_execsql_test 4.7.0 {
  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(4.3, 5.5);
  INSERT INTO t1 VALUES('reveal', 'variableness');
  INSERT INTO t1 VALUES(X'123456', X'654321');

................................................................................
  11   "INSERT INTO t4 VALUES('uvw', 1, 1)"          {{t4.a, t4.b, t4.c}}

  12   "UPDATE t4 SET a='xyx' WHERE rowid=3"         {{t4.a, t4.b, t4.c}}
  13   "UPDATE t4 SET b=1 WHERE rowid=2"             {{t4.a, t4.b, t4.c}}
  14   "UPDATE t4 SET a=0, b=0, c=0"                 {{t4.a, t4.b, t4.c}}
}

# EVIDENCE-OF: R-00404-17670 For the purposes of UNIQUE constraints,
# NULL values are considered distinct from all other values, including
# other NULLs.
#
do_createtable_tests 4.8 {
  1    "INSERT INTO t1 VALUES(NULL, NULL)"           {}
  2    "INSERT INTO t1 VALUES(NULL, NULL)"           {}
  3    "UPDATE t1 SET a = NULL"                      {}
  4    "UPDATE t1 SET b = NULL"                      {}

................................................................................
  5    "INSERT INTO t4 VALUES(NULL, NULL, NULL)"     {}
  6    "INSERT INTO t4 VALUES(NULL, NULL, NULL)"     {}
  7    "UPDATE t4 SET a = NULL"                      {}
  8    "UPDATE t4 SET b = NULL"                      {}
  9    "UPDATE t4 SET c = NULL"                      {}
}

# EVIDENCE-OF: R-55820-29984 In most cases, UNIQUE and PRIMARY KEY
# constraints are implemented by creating a unique index in the
# database.

do_createtable_tests 4.9 -repair drop_all_tables -query {
  SELECT count(*) FROM sqlite_master WHERE type='index'
} {
  1    "CREATE TABLE t1(a TEXT PRIMARY KEY, b)"              1
  2    "CREATE TABLE t1(a INTEGER PRIMARY KEY, b)"           0
  3    "CREATE TABLE t1(a TEXT UNIQUE, b)"                   1
  4    "CREATE TABLE t1(a PRIMARY KEY, b TEXT UNIQUE)"       2
  5    "CREATE TABLE t1(a PRIMARY KEY, b, c, UNIQUE(c, b))"  2
}

# Obsolete: R-02252-33116 Such an index is used like any other index
# in the database to optimize queries.
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
................................................................................
    DELETE FROM $tbl;
    INSERT INTO $tbl ($col) VALUES(0);
    SELECT (rowid==$col) FROM $tbl;
    DELETE FROM $tbl;
  }]] 0
}

# EVIDENCE-OF: R-47901-33947 With one exception noted below, if a rowid
# table has a primary key that consists of a single column and the
# declared type of that column is "INTEGER" in any mixture of upper and
# lower case, then the column becomes an alias for the rowid.
#
# EVIDENCE-OF: R-45951-08347 if the declaration of a column with
# declared type "INTEGER" includes an "PRIMARY KEY DESC" clause, it does
# not become an alias for the rowid and is not classified as an integer
# primary key.
#
do_createtable_tests 5.3 -tclquery {