/ Artifact Content
Login

Artifact a9bc647738c0dcaebf205d6d194b3ce4a6ef3925801cd2d919f0a4ea33a15aeb:



#include "lsmtest.h"
#include <sqlite3.h>

void test_failed(){ 
  assert( 0 );
  return; 
}

#define testSetError(rc) testSetErrorFunc(rc, pRc, __FILE__, __LINE__)
static void testSetErrorFunc(int rc, int *pRc, const char *zFile, int iLine){
  if( rc ){
    *pRc = rc;
    fprintf(stderr, "FAILED (%s:%d) rc=%d ", zFile, iLine, rc);
    test_failed();
  }
}

static int lsm_memcmp(u8 *a, u8 *b, int c){
  int i;
  for(i=0; i<c; i++){
    if( a[i]!=b[i] ) return a[i] - b[i];
  }
  return 0;
}

/*
** A test utility function.
*/
void testFetch(
  TestDb *pDb,                    /* Database handle */
  void *pKey, int nKey,           /* Key to query database for */
  void *pVal, int nVal,           /* Expected value */
  int *pRc                        /* IN/OUT: Error code */
){
  if( *pRc==0 ){
    void *pDbVal;
    int nDbVal;
    int rc;

    static int nCall = 0; nCall++;

    rc = tdb_fetch(pDb, pKey, nKey, &pDbVal, &nDbVal);
    testSetError(rc);
    if( rc==0 && (nVal!=nDbVal || (nVal>0 && lsm_memcmp(pVal, pDbVal, nVal))) ){
      testSetError(1);
    }
  }
}

void testWrite(
  TestDb *pDb,                    /* Database handle */
  void *pKey, int nKey,           /* Key to query database for */
  void *pVal, int nVal,           /* Value to write */
  int *pRc                        /* IN/OUT: Error code */
){
  if( *pRc==0 ){
    int rc;
static int nCall = 0;
nCall++;
    rc = tdb_write(pDb, pKey, nKey, pVal, nVal);
    testSetError(rc);
  }
}
void testDelete(
  TestDb *pDb,                    /* Database handle */
  void *pKey, int nKey,           /* Key to query database for */
  int *pRc                        /* IN/OUT: Error code */
){
  if( *pRc==0 ){
    int rc;
    *pRc = rc = tdb_delete(pDb, pKey, nKey);
    testSetError(rc);
  }
}
void testDeleteRange(
  TestDb *pDb,                    /* Database handle */
  void *pKey1, int nKey1,
  void *pKey2, int nKey2,
  int *pRc                        /* IN/OUT: Error code */
){
  if( *pRc==0 ){
    int rc;
    *pRc = rc = tdb_delete_range(pDb, pKey1, nKey1, pKey2, nKey2);
    testSetError(rc);
  }
}

void testBegin(TestDb *pDb, int iTrans, int *pRc){
  if( *pRc==0 ){
    int rc;
    rc = tdb_begin(pDb, iTrans);
    testSetError(rc);
  }
}
void testCommit(TestDb *pDb, int iTrans, int *pRc){
  if( *pRc==0 ){
    int rc;
    rc = tdb_commit(pDb, iTrans);
    testSetError(rc);
  }
}
#if 0 /* unused */
static void testRollback(TestDb *pDb, int iTrans, int *pRc){
  if( *pRc==0 ){
    int rc;
    rc = tdb_rollback(pDb, iTrans);
    testSetError(rc);
  }
}
#endif

void testWriteStr(
  TestDb *pDb,                    /* Database handle */
  const char *zKey,               /* Key to query database for */
  const char *zVal,               /* Value to write */
  int *pRc                        /* IN/OUT: Error code */
){
  int nVal = (zVal ? strlen(zVal) : 0);
  testWrite(pDb, (void *)zKey, strlen(zKey), (void *)zVal, nVal, pRc);
}

#if 0 /* unused */
static void testDeleteStr(TestDb *pDb, const char *zKey, int *pRc){
  testDelete(pDb, (void *)zKey, strlen(zKey), pRc);
}
#endif
void testFetchStr(
  TestDb *pDb,                    /* Database handle */
  const char *zKey,               /* Key to query database for */
  const char *zVal,               /* Value to write */
  int *pRc                        /* IN/OUT: Error code */
){
  int nVal = (zVal ? strlen(zVal) : 0);
  testFetch(pDb, (void *)zKey, strlen(zKey), (void *)zVal, nVal, pRc);
}

void testFetchCompare(
  TestDb *pControl, 
  TestDb *pDb, 
  void *pKey, int nKey, 
  int *pRc
){
  int rc;
  void *pDbVal1;
  void *pDbVal2;
  int nDbVal1;
  int nDbVal2;

  static int nCall = 0;
  nCall++;

  rc = tdb_fetch(pControl, pKey, nKey, &pDbVal1, &nDbVal1);
  testSetError(rc);

  rc = tdb_fetch(pDb, pKey, nKey, &pDbVal2, &nDbVal2);
  testSetError(rc);

  if( *pRc==0 
   && (nDbVal1!=nDbVal2 || (nDbVal1>0 && memcmp(pDbVal1, pDbVal2, nDbVal1)))
  ){
    testSetError(1);
  }
}

typedef struct ScanResult ScanResult;
struct ScanResult {
  TestDb *pDb;

  int nRow;
  u32 cksum1;
  u32 cksum2;
  void *pKey1; int nKey1;
  void *pKey2; int nKey2;

  int bReverse;
  int nPrevKey;
  u8 aPrevKey[256];
};

static int keyCompare(void *pKey1, int nKey1, void *pKey2, int nKey2){
  int res;
  res = memcmp(pKey1, pKey2, MIN(nKey1, nKey2));
  if( res==0 ){
    res = nKey1 - nKey2;
  }
  return res;
}

int test_scan_debug = 0;

static void scanCompareCb(
  void *pCtx, 
  void *pKey, int nKey,
  void *pVal, int nVal
){
  ScanResult *p = (ScanResult *)pCtx;
  u8 *aKey = (u8 *)pKey;
  u8 *aVal = (u8 *)pVal;
  int i;

  if( test_scan_debug ){
    printf("%d: %.*s\n", p->nRow, nKey, (char *)pKey);
    fflush(stdout);
  }
#if 0
  if( test_scan_debug ) printf("%.20s\n", (char *)pVal);
#endif

#if 0
  /* Check tdb_fetch() matches */
  int rc = 0;
  testFetch(p->pDb, pKey, nKey, pVal, nVal, &rc);
  assert( rc==0 );
#endif

  /* Update the checksum data */
  p->nRow++;
  for(i=0; i<nKey; i++){
    p->cksum1 += ((int)aKey[i] << (i&0x0F));
    p->cksum2 += p->cksum1;
  }
  for(i=0; i<nVal; i++){
    p->cksum1 += ((int)aVal[i] << (i&0x0F));
    p->cksum2 += p->cksum1;
  }

  /* Check that the delivered row is not out of order. */
  if( nKey<(int)sizeof(p->aPrevKey) ){
    if( p->nPrevKey ){
      int res = keyCompare(p->aPrevKey, p->nPrevKey, pKey, nKey);
      if( (res<0 && p->bReverse) || (res>0 && p->bReverse==0) ){
        testPrintError("Returned key out of order at %s:%d\n", 
            __FILE__, __LINE__
        );
      }
    }

    p->nPrevKey = nKey;
    memcpy(p->aPrevKey, pKey, MIN(p->nPrevKey, nKey));
  }

  /* Check that the delivered row is within range. */
  if( p->pKey1 && (
      (memcmp(p->pKey1, pKey, MIN(p->nKey1, nKey))>0)
   || (memcmp(p->pKey1, pKey, MIN(p->nKey1, nKey))==0 && p->nKey1>nKey)
  )){
    testPrintError("Returned key too small at %s:%d\n", __FILE__, __LINE__);
  }
  if( p->pKey2 && (
      (memcmp(p->pKey2, pKey, MIN(p->nKey2, nKey))<0)
   || (memcmp(p->pKey2, pKey, MIN(p->nKey2, nKey))==0 && p->nKey2<nKey)
  )){
    testPrintError("Returned key too large at %s:%d\n", __FILE__, __LINE__);
  }

}

/*
** Scan the contents of the two databases. Check that they match.
*/
void testScanCompare(
  TestDb *pDb1,                   /* Control (trusted) database */
  TestDb *pDb2,                   /* Database being tested */
  int bReverse,
  void *pKey1, int nKey1, 
  void *pKey2, int nKey2, 
  int *pRc
){
  static int nCall = 0; nCall++;
  if( *pRc==0 ){
    ScanResult res1;
    ScanResult res2;
    void *pRes1 = (void *)&res1;
    void *pRes2 = (void *)&res2;

    memset(&res1, 0, sizeof(ScanResult));
    memset(&res2, 0, sizeof(ScanResult));

    res1.pDb = pDb1;
    res1.nKey1 = nKey1; res1.pKey1 = pKey1;
    res1.nKey2 = nKey2; res1.pKey2 = pKey2;
    res1.bReverse = bReverse;
    res2.pDb = pDb2;
    res2.nKey1 = nKey1; res2.pKey1 = pKey1;
    res2.nKey2 = nKey2; res2.pKey2 = pKey2;
    res2.bReverse = bReverse;

    tdb_scan(pDb1, pRes1, bReverse, pKey1, nKey1, pKey2, nKey2, scanCompareCb);
if( test_scan_debug ) printf("\n\n\n");
    tdb_scan(pDb2, pRes2, bReverse, pKey1, nKey1, pKey2, nKey2, scanCompareCb);
if( test_scan_debug ) printf("\n\n\n");

    if( res1.nRow!=res2.nRow 
     || res1.cksum1!=res2.cksum1 
     || res1.cksum2!=res2.cksum2
    ){
      printf("expected: %d %X %X\n", res1.nRow, res1.cksum1, res1.cksum2);
      printf("got:      %d %X %X\n", res2.nRow, res2.cksum1, res2.cksum2);
      testSetError(1);
      *pRc = 1;
    }
  }
}

void testClose(TestDb **ppDb){
  tdb_close(*ppDb);
  *ppDb = 0;
}

TestDb *testOpen(const char *zSystem, int bClear, int *pRc){
  TestDb *pDb = 0;
  if( *pRc==0 ){
    int rc;
    rc = tdb_open(zSystem, 0, bClear, &pDb);
    if( rc!=0 ){
      testSetError(rc);
      *pRc = rc;
    }
  }
  return pDb;
}

void testReopen(TestDb **ppDb, int *pRc){
  if( *pRc==0 ){
    const char *zLib;
    zLib = tdb_library_name(*ppDb);
    testClose(ppDb);
    *pRc = tdb_open(zLib, 0, 0, ppDb);
  }
}


#if 0 /* unused */
static void testSystemSelect(const char *zSys, int *piSel, int *pRc){
  if( *pRc==0 ){
    struct SysName { const char *zName; } *aName;
    int nSys;
    int i;

    for(nSys=0; tdb_system_name(nSys); nSys++);
    aName = malloc(sizeof(struct SysName) * (nSys+1));
    for(i=0; i<=nSys; i++){
      aName[i].zName = tdb_system_name(i);
    }

    *pRc = testArgSelect(aName, "db", zSys, piSel);
    free(aName);
  }
}
#endif

char *testMallocVPrintf(const char *zFormat, va_list ap){
  int nByte;
  va_list copy;
  char *zRet;

  __va_copy(copy, ap);
  nByte = vsnprintf(0, 0, zFormat, copy);
  va_end(copy);

  assert( nByte>=0 );
  zRet = (char *)testMalloc(nByte+1);
  vsnprintf(zRet, nByte+1, zFormat, ap);
  return zRet;
}

char *testMallocPrintf(const char *zFormat, ...){
  va_list ap;
  char *zRet;

  va_start(ap, zFormat);
  zRet = testMallocVPrintf(zFormat, ap);
  va_end(ap);

  return zRet;
}


/*
** A wrapper around malloc(3).
**
** This function should be used for all allocations made by test procedures.
** It has the following properties:
**
**   * Test code may assume that allocations may not fail.
**   * Returned memory is always zeroed.
**
** Allocations made using testMalloc() should be freed using testFree().
*/
void *testMalloc(int n){
  u8 *p = (u8*)malloc(n + 8);
  memset(p, 0, n+8);
  *(int*)p = n;
  return (void*)&p[8];
}

void *testMallocCopy(void *pCopy, int nByte){
  void *pRet = testMalloc(nByte);
  memcpy(pRet, pCopy, nByte);
  return pRet;
}

void *testRealloc(void *ptr, int n){
  if( ptr ){
    u8 *p = (u8*)ptr - 8;
    int nOrig =  *(int*)p;
    p = (u8*)realloc(p, n+8);
    if( nOrig<n ){
      memset(&p[8+nOrig], 0, n-nOrig);
    }
    *(int*)p = n;
    return (void*)&p[8];
  }
  return testMalloc(n);
}

/*
** Free an allocation made by an earlier call to testMalloc().
*/
void testFree(void *ptr){
  if( ptr ){
    u8 *p = (u8*)ptr - 8;
    memset(p, 0x55, *(int*)p + 8);
    free(p);
  }
}

/*
** String zPattern contains a glob pattern. Return true if zStr matches 
** the pattern, or false if it does not.
*/
int testGlobMatch(const char *zPattern, const char *zStr){
  int i = 0;
  int j = 0;

  while( zPattern[i] ){
    char p = zPattern[i];

    if( p=='*' || p=='%' ){
      do {
        if( testGlobMatch(&zPattern[i+1], &zStr[j]) ) return 1;
      }while( zStr[j++] );
      return 0;
    }

    if( zStr[j]==0 || (p!='?' && p!=zStr[j]) ){
      /* Match failed. */
      return 0;
    }

    j++;
    i++;
  }

  return (zPattern[i]==0 && zStr[j]==0);
}

/* 
** End of test utilities 
**************************************************************************/

int do_test(int nArg, char **azArg){
  int j;
  int rc;
  int nFail = 0;
  const char *zPattern = 0;

  if( nArg>1 ){
    testPrintError("Usage: test ?PATTERN?\n");
    return 1;
  }
  if( nArg==1 ){
    zPattern = azArg[0];
  }

  for(j=0; tdb_system_name(j); j++){
    rc = 0;

    test_data_1(tdb_system_name(j), zPattern, &rc);
    test_data_2(tdb_system_name(j), zPattern, &rc);
    test_data_3(tdb_system_name(j), zPattern, &rc);
    test_data_4(tdb_system_name(j), zPattern, &rc);
    test_rollback(tdb_system_name(j), zPattern, &rc);
    test_mc(tdb_system_name(j), zPattern, &rc);
    test_mt(tdb_system_name(j), zPattern, &rc);

    if( rc ) nFail++;
  }

  rc = 0;
  test_oom(zPattern, &rc);
  if( rc ) nFail++;

  rc = 0;
  test_api(zPattern, &rc);
  if( rc ) nFail++;

  rc = 0;
  do_crash_test(zPattern, &rc);
  if( rc ) nFail++;

  rc = 0;
  do_writer_crash_test(zPattern, &rc);
  if( rc ) nFail++;

  return (nFail!=0);
}

static lsm_db *configure_lsm_db(TestDb *pDb){
  lsm_db *pLsm;
  pLsm = tdb_lsm(pDb);
  if( pLsm ){
    tdb_lsm_config_str(pDb, "mmap=1 autowork=1 automerge=4 worker_automerge=4");
  }
  return pLsm;
}

typedef struct WriteHookEvent WriteHookEvent;
struct WriteHookEvent {
  i64 iOff;
  int nData;
  int nUs;
};
WriteHookEvent prev = {0, 0, 0};

static void flushPrev(FILE *pOut){
  if( prev.nData ){
    fprintf(pOut, "w %s %lld %d %d\n", "d", prev.iOff, prev.nData, prev.nUs);
    prev.nData = 0;
  }
}

#if 0 /* unused */
static void do_speed_write_hook2(
  void *pCtx,
  int bLog,
  i64 iOff,
  int nData,
  int nUs
){
  FILE *pOut = (FILE *)pCtx;
  if( bLog ) return;

  if( prev.nData && nData && iOff==prev.iOff+prev.nData ){
    prev.nData += nData;
    prev.nUs += nUs;
  }else{
    flushPrev(pOut);
    if( nData==0 ){
      fprintf(pOut, "s %s 0 0 %d\n", (bLog ? "l" : "d"), nUs);
    }else{
      prev.iOff = iOff;
      prev.nData = nData;
      prev.nUs = nUs;
    }
  }
}
#endif

#define ST_REPEAT  0
#define ST_WRITE   1
#define ST_PAUSE   2
#define ST_FETCH   3
#define ST_SCAN    4
#define ST_NSCAN   5
#define ST_KEYSIZE 6
#define ST_VALSIZE 7
#define ST_TRANS   8


static void print_speed_test_help(){
  printf(
"\n"
"Repeat the following $repeat times:\n"
"  1. Insert $write key-value pairs. One transaction for each write op.\n"
"  2. Pause for $pause ms.\n"
"  3. Perform $fetch queries on the database.\n"
"\n"
"  Keys are $keysize bytes in size. Values are $valsize bytes in size\n"
"  Both keys and values are pseudo-randomly generated\n"
"\n"
"Options are:\n"
"  -repeat  $repeat                 (default value 10)\n"
"  -write   $write                  (default value 10000)\n"
"  -pause   $pause                  (default value 0)\n"
"  -fetch   $fetch                  (default value 0)\n"
"  -keysize $keysize                (default value 12)\n"
"  -valsize $valsize                (default value 100)\n"
"  -system  $system                 (default value \"lsm\")\n"
"  -trans   $trans                  (default value 0)\n"
"\n"
);
}

int do_speed_test2(int nArg, char **azArg){
  struct Option {
    const char *zOpt;
    int eVal;
    int iDefault;
  } aOpt[] = {
    { "-repeat",  ST_REPEAT,    10},
    { "-write",   ST_WRITE,  10000},
    { "-pause",   ST_PAUSE,      0},
    { "-fetch",   ST_FETCH,      0},
    { "-scan",    ST_SCAN,       0},
    { "-nscan",   ST_NSCAN,      0},
    { "-keysize", ST_KEYSIZE,   12},
    { "-valsize", ST_VALSIZE,  100},
    { "-trans",   ST_TRANS,      0},
    { "-system",  -1,            0},
    { "help",     -2,            0},
    {0, 0, 0}
  };
  int i;
  int aParam[9];
  int rc = 0;
  int bReadonly = 0;
  int nContent = 0;

  TestDb *pDb;
  Datasource *pData;
  DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 0, 0, 0, 0 };
  char *zSystem = "";
  int bLsm = 1;
  FILE *pLog = 0;

#ifdef NDEBUG
  /* If NDEBUG is defined, disable the dynamic memory related checks in
  ** lsmtest_mem.c. They slow things down.  */
  testMallocUninstall(tdb_lsm_env());
#endif

  /* Initialize aParam[] with default values. */
  for(i=0; i<ArraySize(aOpt); i++){
    if( aOpt[i].zOpt ) aParam[aOpt[i].eVal] = aOpt[i].iDefault;
  }

  /* Process the command line switches. */
  for(i=0; i<nArg; i+=2){
    int iSel;
    rc = testArgSelect(aOpt, "switch", azArg[i], &iSel);
    if( rc ){
      return rc;
    }
    if( aOpt[iSel].eVal==-2 ){
      print_speed_test_help();
      return 0;
    }
    if( i+1==nArg ){
      testPrintError("option %s requires an argument\n", aOpt[iSel].zOpt);
      return 1;
    }
    if( aOpt[iSel].eVal>=0 ){
      aParam[aOpt[iSel].eVal] = atoi(azArg[i+1]);
    }else{
      zSystem = azArg[i+1];
      bLsm = 0;
#if 0
      for(j=0; zSystem[j]; j++){
        if( zSystem[j]=='=' ) bLsm = 1;
      }
#endif
    }
  }
  
  printf("#");
  for(i=0; i<ArraySize(aOpt); i++){
    if( aOpt[i].zOpt ){
      if( aOpt[i].eVal>=0 ){
        printf(" %s=%d", &aOpt[i].zOpt[1], aParam[aOpt[i].eVal]);
      }else if( aOpt[i].eVal==-1 ){
        printf(" %s=\"%s\"", &aOpt[i].zOpt[1], zSystem);
      }
    }
  }
  printf("\n");

  defn.nMinKey = defn.nMaxKey = aParam[ST_KEYSIZE];
  defn.nMinVal = defn.nMaxVal = aParam[ST_VALSIZE];
  pData = testDatasourceNew(&defn);

  if( aParam[ST_WRITE]==0 ){
    bReadonly = 1;
  }

  if( bLsm ){
    rc = tdb_lsm_open(zSystem, "testdb.lsm", !bReadonly, &pDb);
  }else{
    pDb = testOpen(zSystem, !bReadonly, &rc);
  }
  if( rc!=0 ) return rc;
  if( bReadonly ){
    nContent = testCountDatabase(pDb);
  }

#if 0
  pLog = fopen("/tmp/speed.log", "w");
  tdb_lsm_write_hook(pDb, do_speed_write_hook2, (void *)pLog);
#endif

  for(i=0; i<aParam[ST_REPEAT] && rc==0; i++){
    int msWrite, msFetch;
    int iFetch;
    int nWrite = aParam[ST_WRITE];

    if( bReadonly ){
      msWrite = 0;
    }else{
      testTimeInit();

      if( aParam[ST_TRANS] ) testBegin(pDb, 2, &rc);
      testWriteDatasourceRange(pDb, pData, i*nWrite, nWrite, &rc);
      if( aParam[ST_TRANS] ) testCommit(pDb, 0, &rc);

      msWrite = testTimeGet();
      nContent += nWrite;
    }

    if( aParam[ST_PAUSE] ){
      if( aParam[ST_PAUSE]/1000 ) sleep(aParam[ST_PAUSE]/1000);
      if( aParam[ST_PAUSE]%1000 ) usleep(1000 * (aParam[ST_PAUSE]%1000));
    }

    if( aParam[ST_FETCH] ){
      testTimeInit();
      if( aParam[ST_TRANS] ) testBegin(pDb, 1, &rc);
      for(iFetch=0; iFetch<aParam[ST_FETCH]; iFetch++){
        int iKey = testPrngValue(i*nWrite+iFetch) % nContent;
#ifndef NDEBUG
        testDatasourceFetch(pDb, pData, iKey, &rc);
#else
        void *pKey; int nKey;           /* Database key to query for */
        void *pVal; int nVal;           /* Result of query */

        testDatasourceEntry(pData, iKey, &pKey, &nKey, 0, 0);
        rc = tdb_fetch(pDb, pKey, nKey, &pVal, &nVal);
        if( rc==0 && nVal<0 ) rc = 1;
        if( rc ) break;
#endif
      }
      if( aParam[ST_TRANS] ) testCommit(pDb, 0, &rc);
      msFetch = testTimeGet();
    }else{
      msFetch = 0;
    }

    if( i==(aParam[ST_REPEAT]-1) ){
      testTimeInit();
      testClose(&pDb);
      msWrite += testTimeGet();
    }

    printf("%d %d %d\n", i, msWrite, msFetch);
    fflush(stdout);
  }

  testClose(&pDb);
  testDatasourceFree(pData);

  if( pLog ){
    flushPrev(pLog);
    fclose(pLog);
  }
  return rc;
}

int do_speed_tests(int nArg, char **azArg){

  struct DbSystem {
    const char *zLibrary;
    const char *zColor;
  } aSys[] = {
    { "sqlite3",      "black" },
    { "leveldb",      "blue" },
    { "lsm",          "red" },
    { "lsm_mt2",      "orange" },
    { "lsm_mt3",      "purple" },
    { "kyotocabinet", "green" },
    {0, 0}
  };

  int i;
  int j;
  int rc;
  int nSleep = 0;                 /* ms of rest allowed between INSERT tests */
  int nRow = 0;                   /* Number of rows to insert into database */
  int nStep;                      /* Measure INSERT time after this many rows */
  int nSelStep;                   /* Measure SELECT time after this many rows */
  int nSelTest;                   /* Number of SELECTs to run for timing */
  int doReadTest = 1;
  int doWriteTest = 1;

  int *aTime;                     /* INSERT timing data */
  int *aWrite;                    /* Writes per nStep inserts */
  int *aSelTime;                  /* SELECT timing data */
  int isFirst = 1;
  int bSleep = 0;

  /* File to write gnuplot script to. */
  const char *zOut = "lsmtest_speed.gnuplot";

  u32 sys_mask = 0;

  testMallocUninstall(tdb_lsm_env());

  for(i=0; i<nArg; i++){
    struct Opt { 
      const char *zOpt; 
      int isSwitch;
    } aOpt[] = {
      { "sqlite3" , 0},
      { "leveldb" , 0},
      { "lsm" , 0},
      { "lsm_mt2" , 0},
      { "lsm_mt3" , 0},
      { "kyotocabinet" , 0},
      { "-rows"     , 1},
      { "-sleep"    , 2},
      { "-testmode" , 3},
      { "-out"      , 4},
      { 0, 0}
    };
    int iSel;

    rc = testArgSelect(aOpt, "argument", azArg[i], &iSel);
    if( rc ) return rc;

    if( aOpt[iSel].isSwitch ){
      i++;

      if( i>=nArg ){
        testPrintError("option %s requires an argument\n", aOpt[iSel].zOpt);
        return 1;
      }
      if( aOpt[iSel].isSwitch==1 ){
        nRow = atoi(azArg[i]);
      }
      if( aOpt[iSel].isSwitch==2 ){
        nSleep = atoi(azArg[i]);
      }
      if( aOpt[iSel].isSwitch==3 ){
        struct Mode {
          const char *zMode;
          int doReadTest;
          int doWriteTest;
        } aMode[] = {{"ro", 1, 0} , {"rw", 1, 1}, {"wo", 0, 1}, {0, 0, 0}};
        int iMode;
        rc = testArgSelect(aMode, "option", azArg[i], &iMode);
        if( rc ) return rc;
        doReadTest = aMode[iMode].doReadTest;
        doWriteTest = aMode[iMode].doWriteTest;
      }
      if( aOpt[iSel].isSwitch==4 ){
        /* The "-out FILE" switch. This option is used to specify a file to
        ** write the gnuplot script to. */
        zOut = azArg[i];
      }
    }else{
      /* A db name */
      rc = testArgSelect(aOpt, "system", azArg[i], &iSel);
      if( rc ) return rc;
      sys_mask |= (1<<iSel);
    }
  }

  if( sys_mask==0 ) sys_mask = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
  nRow = MAX(nRow, 100000);
  nStep = nRow/100;
  nSelStep = nRow/10;
  nSelTest = (nSelStep > 100000) ? 100000 : nSelStep;

  aTime = malloc(sizeof(int) * ArraySize(aSys) * nRow/nStep);
  aWrite = malloc(sizeof(int) * nRow/nStep);
  aSelTime = malloc(sizeof(int) * ArraySize(aSys) * nRow/nSelStep);

  /* This loop collects the INSERT speed data. */
  if( doWriteTest ){
    printf("Writing output to file \"%s\".\n",  zOut);

    for(j=0; aSys[j].zLibrary; j++){
      FILE *pLog = 0;
      TestDb *pDb;                  /* Database being tested */
      lsm_db *pLsm;
      int iDot = 0;
  
      if( ((1<<j)&sys_mask)==0 ) continue;
      if( bSleep && nSleep ) sqlite3_sleep(nSleep);
      bSleep = 1;

      testCaseBegin(&rc, 0, "speed.insert.%s", aSys[j].zLibrary);

      rc = tdb_open(aSys[j].zLibrary, 0, 1, &pDb);
      if( rc ) return rc;

      pLsm = configure_lsm_db(pDb);
#if 0
      pLog = fopen("/tmp/speed.log", "w");
      tdb_lsm_write_hook(pDb, do_speed_write_hook2, (void *)pLog);
#endif
  
      testTimeInit();
      for(i=0; i<nRow; i+=nStep){
        int iStep;
        int nWrite1 = 0, nWrite2 = 0;
        testCaseProgress(i, nRow, testCaseNDot(), &iDot);
        if( pLsm ) lsm_info(pLsm, LSM_INFO_NWRITE, &nWrite1);
        for(iStep=0; iStep<nStep; iStep++){
          u32 aKey[4];                  /* 16-byte key */
          u32 aVal[25];                 /* 100 byte value */
          testPrngArray(i+iStep, aKey, ArraySize(aKey));
          testPrngArray(i+iStep, aVal, ArraySize(aVal));
          rc = tdb_write(pDb, aKey, sizeof(aKey), aVal, sizeof(aVal));
        }
        aTime[(j*nRow+i)/nStep] = testTimeGet();
        if( pLsm ) lsm_info(pLsm, LSM_INFO_NWRITE, &nWrite2);
        aWrite[i/nStep] = nWrite2 - nWrite1;
      }

      tdb_close(pDb);
      if( pLog ) fclose(pLog);
      testCaseFinish(rc);
    }
  }

  /* This loop collects the SELECT speed data. */
  if( doReadTest ){
    for(j=0; aSys[j].zLibrary; j++){
      int iDot = 0;
      TestDb *pDb;                  /* Database being tested */

      if( ((1<<j)&sys_mask)==0 ) continue;
      if( bSleep && nSleep ) sqlite3_sleep(nSleep);
      bSleep = 1;

      testCaseBegin(&rc, 0, "speed.select.%s", aSys[j].zLibrary);

      if( doWriteTest ){
        rc = tdb_open(aSys[j].zLibrary, 0, 1, &pDb);
        if( rc ) return rc;
        configure_lsm_db(pDb);

        for(i=0; i<nRow; i+=nSelStep){
          int iStep;
          int iSel;
          testCaseProgress(i, nRow, testCaseNDot(), &iDot);
          for(iStep=0; iStep<nSelStep; iStep++){
            u32 aKey[4];                  /* 16-byte key */
            u32 aVal[25];                 /* 100 byte value */
            testPrngArray(i+iStep, aKey, ArraySize(aKey));
            testPrngArray(i+iStep, aVal, ArraySize(aVal));
            rc = tdb_write(pDb, aKey, sizeof(aKey), aVal, sizeof(aVal));
          }
    
          testTimeInit();
          for(iSel=0; iSel<nSelTest; iSel++){
            void *pDummy;
            int nDummy;
            u32 iKey;
            u32 aKey[4];                  /* 16-byte key */
    
            iKey = testPrngValue(iSel) % (i+nSelStep);
            testPrngArray(iKey, aKey, ArraySize(aKey));
            rc = tdb_fetch(pDb, aKey, sizeof(aKey), &pDummy, &nDummy);
          }
          aSelTime[(j*nRow+i)/nSelStep] = testTimeGet();
          tdb_fetch(pDb, 0, 0, 0, 0);
        }
      }else{
        int t;
        int iSel;

        rc = tdb_open(aSys[j].zLibrary, 0, 0, &pDb);
        configure_lsm_db(pDb);

        testTimeInit();
        for(iSel=0; rc==LSM_OK && iSel<nSelTest; iSel++){
          void *pDummy;
          int nDummy;
          u32 iKey;
          u32 aKey[4];                  /* 16-byte key */
#ifndef NDEBUG
          u32 aVal[25];                 /* 100 byte value */
#endif

          testCaseProgress(iSel, nSelTest, testCaseNDot(), &iDot);
    
          iKey = testPrngValue(iSel) % nRow;
          testPrngArray(iKey, aKey, ArraySize(aKey));
          rc = tdb_fetch(pDb, aKey, sizeof(aKey), &pDummy, &nDummy);

#ifndef NDEBUG
          testPrngArray(iKey, aVal, ArraySize(aVal));
          assert( nDummy==100 && memcmp(aVal, pDummy, 100)==0 );
#endif
        }
        if( rc!=LSM_OK ) return rc;

        t = testTimeGet();
        tdb_fetch(pDb, 0, 0, 0, 0);

        printf("%s: %d selects/second\n", 
            aSys[j].zLibrary, (int)((double)nSelTest*1000.0/t)
        );
      }

      tdb_close(pDb);
      testCaseFinish(rc);
    }
  }


  if( doWriteTest ){
    FILE *pOut = fopen(zOut, "w");
    if( !pOut ){
      printf("fopen(\"%s\", \"w\"): %s\n", zOut, strerror(errno));
      return 1;
    }

    fprintf(pOut, "set xlabel \"Rows Inserted\"\n");
    fprintf(pOut, "set ylabel \"Inserts per second\"\n");
    if( doReadTest ){
      fprintf(pOut, "set y2label \"Selects per second\"\n");
    }else if( sys_mask==(1<<2) ){
      fprintf(pOut, "set y2label \"Page writes per insert\"\n");
    }
    fprintf(pOut, "set yrange [0:*]\n");
    fprintf(pOut, "set y2range [0:*]\n");
    fprintf(pOut, "set xrange [%d:*]\n", MAX(nStep, nRow/20) );
    fprintf(pOut, "set ytics nomirror\n");
    fprintf(pOut, "set y2tics nomirror\n");
    fprintf(pOut, "set key box lw 0.01\n");
    fprintf(pOut, "plot ");
  
    for(j=0; aSys[j].zLibrary; j++){
      if( (1<<j)&sys_mask ){
        const char *zLib = aSys[j].zLibrary;
        fprintf(pOut, "%s\"-\" ti \"%s INSERT\" with lines lc rgb \"%s\" ", 
            (isFirst?"":", "), zLib, aSys[j].zColor
        );
        if( doReadTest ){
          fprintf(pOut, ", \"-\" ti \"%s SELECT\" "
                 "axis x1y2 with points lw 3 lc rgb \"%s\""
              , zLib, aSys[j].zColor
          );
        }
        isFirst = 0;
      }
    }

    assert( strcmp(aSys[2].zLibrary, "lsm")==0 );
    if( sys_mask==(1<<2) && !doReadTest ){
      fprintf(pOut, ", \"-\" ti \"lsm pages written\" "
        "axis x1y2 with boxes lw 1 lc rgb \"grey\""
      );
    }
  
    fprintf(pOut, "\n");
  
    for(j=0; aSys[j].zLibrary; j++){
      if( ((1<<j)&sys_mask)==0 ) continue;
      fprintf(pOut, "# Rows    Inserts per second\n");
      for(i=0; i<nRow; i+=nStep){
        int iTime = aTime[(j*nRow+i)/nStep];
        int ips = (int)((i+nStep)*1000.0 / (double)iTime);
        fprintf(pOut, "%d %d\n", i+nStep, ips);
      }
      fprintf(pOut, "end\n");
  
      if( doReadTest ){
        fprintf(pOut, "# Rows    Selects per second\n");
        for(i=0; i<nRow; i+=nSelStep){
          int sps = (int)(nSelTest*1000.0/(double)aSelTime[(j*nRow+i)/nSelStep]);
          fprintf(pOut, "%d %d\n", i+nSelStep, sps);
        }
        fprintf(pOut, "end\n");
      }else if( sys_mask==(1<<2) ){
        for(i=0; i<(nRow/nStep); i++){
          fprintf(pOut, "%d %f\n", i*nStep, (double)aWrite[i] / (double)nStep);
        }
        fprintf(pOut, "end\n");
      }
    }
  
    fprintf(pOut, "pause -1\n");
    fclose(pOut);
  }

  free(aTime);
  free(aSelTime);
  free(aWrite);
  testMallocInstall(tdb_lsm_env());
  return 0;
}

/*
** Usage: lsmtest random ?N?
**
** This command prints a sequence of zero or more numbers from the PRNG
** system to stdout. If the "N" argument is missing, values the first 10
** values (i=0, i=1, ... i=9) are printed. Otherwise, the first N.
**
** This was added to verify that the PRNG values do not change between
** runs of the lsmtest program.
*/
int do_random_tests(int nArg, char **azArg){
  int i;
  int nRand;
  if( nArg==0 ){
    nRand = 10;
  }else if( nArg==1 ){
    nRand = atoi(azArg[0]);
  }else{
    testPrintError("Usage: random ?N?\n");
    return -1;
  }
  for(i=0; i<nRand; i++){
    printf("0x%x\n", testPrngValue(i));
  }
  return 0;
}

static int testFormatSize(char *aBuf, int nBuf, i64 nByte){
  int res;
  if( nByte<(1<<10) ){
    res = snprintf(aBuf, nBuf, "%d byte", (int)nByte);
  }else if( nByte<(1<<20) ){
    res = snprintf(aBuf, nBuf, "%dK", (int)(nByte/(1<<10)));
  }else{
    res = snprintf(aBuf, nBuf, "%dM", (int)(nByte/(1<<20)));
  }
  return res;
}

static i64 testReadSize(char *z){
  int n = strlen(z);
  char c = z[n-1];
  i64 nMul = 1;

  switch( c ){
    case 'g': case 'G':
      nMul = (1<<30);
      break;

    case 'm': case 'M':
      nMul = (1<<20);
      break;

    case 'k': case 'K':
      nMul = (1<<10);
      break;

    default:
      nMul = 1;
  }

  return nMul * (i64)atoi(z);
} 

/*
** Usage: lsmtest writespeed FILESIZE BLOCKSIZE SYNCSIZE
*/
static int do_writer_test(int nArg, char **azArg){
  int nBlock;
  int nSize;
  int i;
  int fd;
  int ms;
  char aFilesize[32];
  char aBlockSize[32];

  char *aPage;
  int *aOrder;
  int nSync;

  i64 filesize;
  i64 blocksize;
  i64 syncsize;
  int nPage = 4096;

  /* How long to sleep before running a trial (in ms). */
#if 0
  const int nSleep = 10000;
#endif
  const int nSleep = 0;

  if( nArg!=3 ){
    testPrintUsage("FILESIZE BLOCKSIZE SYNCSIZE");
    return -1;
  }

  filesize = testReadSize(azArg[0]);
  blocksize = testReadSize(azArg[1]);
  syncsize = testReadSize(azArg[2]);

  nBlock = (int)(filesize / blocksize);
  nSize = (int)blocksize;
  nSync = (int)(syncsize / blocksize);

  aPage = (char *)malloc(4096);
  aOrder = (int *)malloc(nBlock * sizeof(int));
  for(i=0; i<nBlock; i++) aOrder[i] = i;
  for(i=0; i<(nBlock*25); i++){
    int tmp;
    u32 a = testPrngValue(i);
    u32 b = testPrngValue(a);
    a = a % nBlock;
    b = b % nBlock;
    tmp = aOrder[a];
    aOrder[a] = aOrder[b];
    aOrder[b] = tmp;
  }

  testFormatSize(aFilesize, sizeof(aFilesize), (i64)nBlock * (i64)nSize);
  testFormatSize(aBlockSize, sizeof(aFilesize), nSize);

  printf("Testing writing a %s file using %s blocks. ", aFilesize, aBlockSize);
  if( nSync==1 ){
    printf("Sync after each block.\n");
  }else{
    printf("Sync after each %d blocks.\n", nSync);
  }

  printf("Preparing file... ");
  fflush(stdout);
  unlink("writer.out");
  fd = open("writer.out", O_RDWR|O_CREAT|_O_BINARY, 0664);
  if( fd<0 ){
    testPrintError("open(): %d - %s\n", errno, strerror(errno));
    return -1;
  }
  testTimeInit();
  for(i=0; i<nBlock; i++){
    int iPg;
    memset(aPage, i&0xFF, nPage);
    for(iPg=0; iPg<(nSize/nPage); iPg++){
      write(fd, aPage, nPage);
    }
  }
  fsync(fd);
  printf("ok (%d ms)\n", testTimeGet());

  for(i=0; i<5; i++){
    int j;

    sqlite3_sleep(nSleep);
    printf("Now writing sequentially...  ");
    fflush(stdout);

    lseek(fd, 0, SEEK_SET);
    testTimeInit();
    for(j=0; j<nBlock; j++){
      int iPg;
      if( ((j+1)%nSync)==0 ) fdatasync(fd);
      memset(aPage, j&0xFF, nPage);
      for(iPg=0; iPg<(nSize/nPage); iPg++){
        write(fd, aPage, nPage);
      }
    }
    fdatasync(fd);
    ms = testTimeGet();
    printf("%d ms\n", ms);
    sqlite3_sleep(nSleep);
    printf("Now in an arbitrary order... ");

    fflush(stdout);
    testTimeInit();
    for(j=0; j<nBlock; j++){
      int iPg;
      if( ((j+1)%nSync)==0 ) fdatasync(fd);
      lseek(fd, aOrder[j]*nSize, SEEK_SET);
      memset(aPage, j&0xFF, nPage);
      for(iPg=0; iPg<(nSize/nPage); iPg++){
        write(fd, aPage, nPage);
      }
    }
    fdatasync(fd);
    ms = testTimeGet();
    printf("%d ms\n", ms);
  }

  close(fd);
  free(aPage);
  free(aOrder);

  return 0;
}

static void do_insert_work_hook(lsm_db *db, void *p){
  char *z = 0;
  lsm_info(db, LSM_INFO_DB_STRUCTURE, &z);
  if( z ){
    printf("%s\n", z);
    fflush(stdout);
    lsm_free(lsm_get_env(db), z);
  }

  unused_parameter(p);
}

typedef struct InsertWriteHook InsertWriteHook;
struct InsertWriteHook {
  FILE *pOut;
  int bLog;
  i64 iOff;
  int nData;
};

static void flushHook(InsertWriteHook *pHook){
  if( pHook->nData ){
    fprintf(pHook->pOut, "write %s %d %d\n", 
        (pHook->bLog ? "log" : "db"), (int)pHook->iOff, pHook->nData
    );
    pHook->nData = 0;
    fflush(pHook->pOut);
  }
}

static void do_insert_write_hook(
  void *pCtx,
  int bLog,
  i64 iOff,
  int nData,
  int nUs
){
  InsertWriteHook *pHook = (InsertWriteHook *)pCtx;
  if( bLog ) return;

  if( nData==0 ){
    flushHook(pHook);
    fprintf(pHook->pOut, "sync %s\n", (bLog ? "log" : "db"));
  }else if( pHook->nData 
         && bLog==pHook->bLog 
         && iOff==(pHook->iOff+pHook->nData) 
  ){
    pHook->nData += nData;
  }else{
    flushHook(pHook);
    pHook->bLog = bLog;
    pHook->iOff = iOff;
    pHook->nData = nData;
  }
}

static int do_replay(int nArg, char **azArg){
  char aBuf[4096];
  FILE *pInput;
  FILE *pClose = 0;
  const char *zDb;

  lsm_env *pEnv;
  lsm_file *pOut;
  int rc;

  if( nArg!=2 ){
    testPrintError("Usage: replay WRITELOG FILE\n");
    return 1;
  }

  if( strcmp(azArg[0], "-")==0 ){
    pInput = stdin;
  }else{
    pClose = pInput = fopen(azArg[0], "r");
  }
  zDb = azArg[1];
  pEnv = tdb_lsm_env();
  rc = pEnv->xOpen(pEnv, zDb, 0, &pOut);
  if( rc!=LSM_OK ) return rc;

  while( feof(pInput)==0 ){
    char zLine[80];
    fgets(zLine, sizeof(zLine)-1, pInput);
    zLine[sizeof(zLine)-1] = '\0';

    if( 0==memcmp("sync db", zLine, 7) ){
      rc = pEnv->xSync(pOut);
      if( rc!=0 ) break;
    }else{
      int iOff;
      int nData;
      int nMatch;
      nMatch = sscanf(zLine, "write db %d %d", &iOff, &nData);
      if( nMatch==2 ){
        int i;
        for(i=0; i<nData; i+=sizeof(aBuf)){
          memset(aBuf, i&0xFF, sizeof(aBuf));
          rc = pEnv->xWrite(pOut, iOff+i, aBuf, sizeof(aBuf));
          if( rc!=0 ) break;
        }
      }
    }
  }
  if( pClose ) fclose(pClose);
  pEnv->xClose(pOut);

  return rc;
}

static int do_insert(int nArg, char **azArg){
  const char *zDb = "lsm";
  TestDb *pDb = 0;
  int i;
  int rc;
  const int nRow = 1 * 1000 * 1000;

  DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 8, 15, 80, 150 };
  Datasource *pData = 0;

  if( nArg>1 ){
    testPrintError("Usage: insert ?DATABASE?\n");
    return 1;
  }
  if( nArg==1 ){ zDb = azArg[0]; }

  testMallocUninstall(tdb_lsm_env());
  for(i=0; zDb[i] && zDb[i]!='='; i++);
  if( zDb[i] ){
    rc = tdb_lsm_open(zDb, "testdb.lsm", 1, &pDb);
  }else{
    rc = tdb_open(zDb, 0, 1, &pDb);
  }

  if( rc!=0 ){
    testPrintError("Error opening db \"%s\": %d\n", zDb, rc);
  }else{
    InsertWriteHook hook;
    memset(&hook, 0, sizeof(hook));
    hook.pOut = fopen("writelog.txt", "w");

    pData = testDatasourceNew(&defn);
    tdb_lsm_config_work_hook(pDb, do_insert_work_hook, 0);
    tdb_lsm_write_hook(pDb, do_insert_write_hook, (void *)&hook);

    if( rc==0 ){
      for(i=0; i<nRow; i++){
        void *pKey; int nKey;     /* Database key to insert */
        void *pVal; int nVal;     /* Database value to insert */
        testDatasourceEntry(pData, i, &pKey, &nKey, &pVal, &nVal);
        tdb_write(pDb, pKey, nKey, pVal, nVal);
      }
    }

    testDatasourceFree(pData);
    tdb_close(pDb);
    flushHook(&hook);
    fclose(hook.pOut);
  }
  testMallocInstall(tdb_lsm_env());

  return rc;
}

static int st_do_show(int a, char **b)      { return do_show(a, b); }
static int st_do_work(int a, char **b)      { return do_work(a, b); }
static int st_do_io(int a, char **b)        { return do_io(a, b); }

#ifdef __linux__
#include <sys/time.h>
#include <sys/resource.h>

static void lsmtest_rusage_report(void){
  struct rusage r;
  memset(&r, 0, sizeof(r));

  getrusage(RUSAGE_SELF, &r);
  printf("# getrusage: { ru_maxrss %d ru_oublock %d ru_inblock %d }\n", 
      (int)r.ru_maxrss, (int)r.ru_oublock, (int)r.ru_inblock
  );
}
#else
static void lsmtest_rusage_report(void){
  /* no-op */
}
#endif

int main(int argc, char **argv){
  struct TestFunc {
    const char *zName;
    int bRusageReport;
    int (*xFunc)(int, char **);
  } aTest[] = {
    {"random",      1, do_random_tests},
    {"writespeed",  1, do_writer_test},
    {"io",          1, st_do_io},

    {"insert",      1, do_insert},
    {"replay",      1, do_replay},

    {"speed",       1, do_speed_tests},
    {"speed2",      1, do_speed_test2},
    {"show",        0, st_do_show},
    {"work",        1, st_do_work},
    {"test",        1, do_test},

    {0, 0}
  };
  int rc;                         /* Return Code */
  int iFunc;                      /* Index into aTest[] */

  int nLeakAlloc = 0;             /* Allocations leaked by lsm */
  int nLeakByte = 0;              /* Bytes leaked by lsm */

#ifdef LSM_DEBUG_MEM
  FILE *pReport = 0;              /* lsm malloc() report file */
  const char *zReport = "malloc.txt generated";
#else
  const char *zReport = "malloc.txt NOT generated";
#endif

  testMallocInstall(tdb_lsm_env());

  if( argc<2 ){
    testPrintError("Usage: %s sub-command ?args...?\n", argv[0]);
    return -1;
  }

  /* Initialize error reporting */
  testErrorInit(argc, argv);

  /* Initialize PRNG system */
  testPrngInit();

  rc = testArgSelect(aTest, "sub-command", argv[1], &iFunc);
  if( rc==0 ){
    rc = aTest[iFunc].xFunc(argc-2, &argv[2]);
  }

#ifdef LSM_DEBUG_MEM
  pReport = fopen("malloc.txt", "w");
  testMallocCheck(tdb_lsm_env(), &nLeakAlloc, &nLeakByte, pReport);
  fclose(pReport);
#else
  testMallocCheck(tdb_lsm_env(), &nLeakAlloc, &nLeakByte, 0);
#endif

  if( nLeakAlloc ){
    testPrintError("Leaked %d bytes in %d allocations (%s)\n", 
        nLeakByte, nLeakAlloc, zReport
    );
    if( rc==0 ) rc = -1;
  }
  testMallocUninstall(tdb_lsm_env());

  if( aTest[iFunc].bRusageReport ){
    lsmtest_rusage_report();
  }
  return rc;
}